Source code for darts.models.forecasting.sf_tbats

"""
TBATS
-----
"""

from typing import Optional

from statsforecast.models import TBATS as SF_TBATS

from darts.models.forecasting.sf_model import StatsForecastModel


[docs]class TBATS(StatsForecastModel): def __init__( self, *args, add_encoders: Optional[dict] = None, quantiles: Optional[list[float]] = None, random_state: Optional[int] = None, **kwargs, ): """TBATS based on the `Statsforecasts package <https://github.com/Nixtla/statsforecast>`_. Trigonometric Box-Cox transform, ARMA errors, Trend and Seasonal components (TBATS) model. It is an innovations state space model framework used for forecasting time series with multiple seasonalities. It uses a Box-Cox tranformation, ARMA errors, and a trigonometric representation of the seasonal patterns based on Fourier series. We refer to the `StatsForecast documentation <https://nixtlaverse.nixtla.io/statsforecast/src/core/models.html#tbats>`_ for the exhaustive documentation of the arguments. In addition to univariate deterministic forecasting, it comes with additional support: - **Future covariates:** Use exogenous features to potentially improve predictive accuracy. Darts adds support by first regressing the series against the future covariates using a :class:`~darts.models.forecasting.linear_regression_model.LinearRegressionModel` model and then running the StatsForecast model on the in-sample residuals from this original regression. This approach was inspired by `this post of Stephan Kolassa <https://stats.stackexchange.com/q/220885>`_. - **Probabilstic forecasting:** To generate probabilistic forecasts, you can set the following parameters when calling :meth:`~darts.models.forecasting.sf_model.StatsForecastModel.predict`: - Forecast quantile values directly by setting `predict_likelihood_parameters=True`. - Generate sampled forecasts from these quantiles by setting `num_samples >> 1`. - **Transferable series forecasting:** Apply the fitted model to a new input `series` at prediction time. Darts adds support by first fitting a copy of the model on the new series, and then using that model to generate the corresponding forecast. .. note:: Future covariates are not supported when the input series contain missing values. .. note:: The first model call might take more time than all subsequent calls as the model relies on Numba and jit compilation. Parameters ---------- args Positional arguments for ``statsforecasts.models.TBATS``. add_encoders A large number of future covariates can be automatically generated with `add_encoders`. This can be done by adding multiple pre-defined index encoders and/or custom user-made functions that will be used as index encoders. Additionally, a transformer such as Darts' :class:`Scaler` can be added to transform the generated covariates. This happens all under one hood and only needs to be specified at model creation. Read :meth:`SequentialEncoder <darts.dataprocessing.encoders.SequentialEncoder>` to find out more about ``add_encoders``. Default: ``None``. An example showing some of ``add_encoders`` features: .. highlight:: python .. code-block:: python def encode_year(idx): return (idx.year - 1950) / 50 add_encoders={ 'cyclic': {'future': ['month']}, 'datetime_attribute': {'future': ['hour', 'dayofweek']}, 'position': {'future': ['relative']}, 'custom': {'future': [encode_year]}, 'transformer': Scaler(), 'tz': 'CET' } .. quantiles Optionally, produce quantile predictions at `quantiles` levels when performing probabilistic forecasting with `num_samples > 1` or `predict_likelihood_parameters=True`. random_state Control the randomness of probabilistic conformal forecasts (sample generation) across different runs. kwargs Keyword arguments for ``statsforecasts.models.TBATS``. Examples -------- >>> from darts.datasets import AirPassengersDataset >>> from darts.models import TBATS >>> series = AirPassengersDataset().load() >>> # define TBATS parameters >>> model = TBATS(season_length=12) >>> model.fit(series) >>> pred = model.predict(6) >>> pred.values() array([[450.79653684], [472.09265790], [497.76948306], [510.74927369], [520.92224557], [570.33881522]]) """ super().__init__( model=SF_TBATS(*args, **kwargs), quantiles=quantiles, add_encoders=add_encoders, random_state=random_state, )