"""
Global Baseline Models (Naive)
------------------------------
A collection of simple benchmark models working with univariate, multivariate, single, and multiple series.
- :class:`GlobalNaiveAggregate`
- :class:`GlobalNaiveDrift`
- :class:`GlobalNaiveSeasonal`
"""
from abc import ABC, abstractmethod
from collections.abc import Sequence
from typing import Callable, Optional, Union
import torch
from darts import TimeSeries
from darts.logging import get_logger, raise_log
from darts.models.forecasting.pl_forecasting_module import (
PLMixedCovariatesModule,
io_processor,
)
from darts.models.forecasting.torch_forecasting_model import (
MixedCovariatesTorchModel,
TorchForecastingModel,
)
from darts.utils.data.sequential_dataset import MixedCovariatesSequentialDataset
from darts.utils.data.training_dataset import MixedCovariatesTrainingDataset
MixedCovariatesTrainTensorType = tuple[
torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor
]
logger = get_logger(__name__)
def _extract_targets(batch: tuple[torch.Tensor], n_targets: int):
"""Extracts and returns the target components from an input batch
Parameters
----------
batch
The input batch tuple for the forward method. Has elements `(x_past, x_future, x_static)`.
n_targets
The number of target components to extract.
"""
return batch[0][:, :, :n_targets]
def _repeat_along_output_chunk(x: torch.Tensor, ocl: int) -> torch.Tensor:
"""Expands a tensor `x` of shape (batch size, n components) to a tensor of shape
(batch size, `ocl`, n target components, 1 (n samples)), by repeating the values
along the `output_chunk_length` axis.
Parameters
----------
x
An input tensor of shape (batch size, n target components)
ocl
The output_chunk_length.
"""
return x.view(-1, 1, x[0].shape[-1], 1).expand(-1, ocl, -1, -1)
class _GlobalNaiveModule(PLMixedCovariatesModule, ABC):
def __init__(self, *args, **kwargs):
"""Pytorch module for implementing naive models.
Implement your own naive module by subclassing from `_GlobalNaiveModule`, and implement the
logic for prediction in the private `_forward` method.
"""
super().__init__(*args, **kwargs)
@io_processor
def forward(
self, x_in: tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]
) -> torch.Tensor:
"""Naive model forward pass.
Parameters
----------
x_in
comes as tuple `(x_past, x_future, x_static)` where `x_past` is the input/past chunk and `x_future`
is the output/future chunk. Input dimensions are `(batch_size, time_steps, components)`
Returns
-------
torch.Tensor
The output Tensor of shape `(batch_size, output_chunk_length, output_dim, nr_params)`
"""
return self._forward(x_in)
@abstractmethod
def _forward(self, x_in) -> torch.Tensor:
"""Private method to implement the forward method in the subclasses."""
pass
class _GlobalNaiveModel(MixedCovariatesTorchModel, ABC):
def __init__(
self,
input_chunk_length: int,
output_chunk_length: int,
output_chunk_shift: int = 0,
use_static_covariates: bool = True,
**kwargs,
):
"""Base class for global naive models. The naive models inherit from `MixedCovariatesTorchModel` giving access
to past, future, and static covariates in the model `forward()` method. This allows to create custom models
naive models which can make use of the covariates. The built-in naive models will not use this information.
The naive models do not have to be trained before generating predictions.
To add a new naive model:
- subclass from `_GlobalNaiveModel` with implementation of private method `_create_model` that creates an
object of:
- subclass from `_GlobalNaiveModule` with implementation of private method `_forward`
.. note::
- Model checkpointing with `save_checkpoints=True`, and checkpoint loading with `load_from_checkpoint()`
and `load_weights_from_checkpoint()` are not supported for global naive models.
Parameters
----------
input_chunk_length
The length of the input sequence fed to the model.
output_chunk_length
The length of the emitted forecast and output sequence fed to the model.
output_chunk_shift
Optionally, the number of steps to shift the start of the output chunk into the future (relative to the
input chunk end). This will create a gap between the input and output. If the model supports
`future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start
`output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model
cannot generate autoregressive predictions (`n > output_chunk_length`).
use_static_covariates
Whether the model should use static covariate information in case the input `series` passed to ``fit()``
contain static covariates. If ``True``, and static covariates are available at fitting time, will enforce
that all target `series` have the same static covariate dimensionality in ``fit()`` and ``predict()``.
**kwargs
Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and
Darts' :class:`TorchForecastingModel`.
Since naive models are not trained, the following parameters will have no effect:
`loss_fn`, `likelihood`, `optimizer_cls`, `optimizer_kwargs`, `lr_scheduler_cls`, `lr_scheduler_kwargs`,
`n_epochs`, `save_checkpoints`, and some of `pl_trainer_kwargs`.
"""
super().__init__(**self._extract_torch_model_params(**self.model_params))
# extract pytorch lightning module kwargs
self.pl_module_params = self._extract_pl_module_params(**self.model_params)
self._considers_static_covariates = use_static_covariates
def fit(
self,
series: Union[TimeSeries, Sequence[TimeSeries]],
past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None,
future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None,
*args,
**kwargs,
) -> TorchForecastingModel:
"""Fit/train the model on a (or potentially multiple) series.
This method is only implemented for naive baseline models to provide a unified fit/predict API with other
forecasting models.
The model is not really trained on the input, but `fit()` is used to setup the model based on the input series.
Also, it stores the training `series` in case only a single `TimeSeries` was passed. This allows to call
`predict()` without having to pass the single `series`.
Parameters
----------
series
A series or sequence of series serving as target (i.e. what the model will be trained to forecast)
past_covariates
Optionally, a series or sequence of series specifying past-observed covariates
future_covariates
Optionally, a series or sequence of series specifying future-known covariates
**kwargs
Optionally, some keyword arguments.
Returns
-------
self
Fitted model.
"""
return super().fit(series, past_covariates, future_covariates, *args, **kwargs)
@staticmethod
def load_from_checkpoint(
model_name: str,
work_dir: str = None,
file_name: str = None,
best: bool = True,
**kwargs,
) -> "TorchForecastingModel":
raise_log(
NotImplementedError(
"GlobalNaiveModels do not support loading from checkpoint since they are never trained."
),
logger=logger,
)
def load_weights_from_checkpoint(
self,
model_name: str = None,
work_dir: str = None,
file_name: str = None,
best: bool = True,
strict: bool = True,
load_encoders: bool = True,
skip_checks: bool = False,
**kwargs,
):
raise_log(
NotImplementedError(
"GlobalNaiveModels do not support weights loading since they do not have any weights/parameters."
),
logger=logger,
)
@abstractmethod
def _create_model(
self, train_sample: MixedCovariatesTrainTensorType
) -> _GlobalNaiveModule:
pass
def _verify_predict_sample(self, predict_sample: tuple):
# naive models do not have to be trained, predict sample does not
# have to match the training sample
pass
def supports_likelihood_parameter_prediction(self) -> bool:
return False
def supports_probabilistic_prediction(self) -> bool:
return False
@property
def supports_static_covariates(self) -> bool:
return True
@property
def supports_multivariate(self) -> bool:
return True
@property
def _requires_training(self) -> bool:
# naive models do not have to be trained.
return False
def _build_train_dataset(
self,
target: Sequence[TimeSeries],
past_covariates: Optional[Sequence[TimeSeries]],
future_covariates: Optional[Sequence[TimeSeries]],
sample_weight: Optional[Sequence[TimeSeries]],
max_samples_per_ts: Optional[int],
) -> MixedCovariatesTrainingDataset:
return MixedCovariatesSequentialDataset(
target_series=target,
past_covariates=past_covariates,
future_covariates=future_covariates,
input_chunk_length=self.input_chunk_length,
output_chunk_length=0,
output_chunk_shift=self.output_chunk_shift,
max_samples_per_ts=max_samples_per_ts,
use_static_covariates=self.uses_static_covariates,
sample_weight=sample_weight,
)
class _NoCovariatesMixin:
@property
def supports_static_covariates(self) -> bool:
return False
@property
def supports_future_covariates(self) -> bool:
return False
@property
def supports_past_covariates(self) -> bool:
return False
class _GlobalNaiveAggregateModule(_GlobalNaiveModule):
def __init__(
self, agg_fn: Callable[[torch.Tensor, int], torch.Tensor], *args, **kwargs
):
super().__init__(*args, **kwargs)
self.agg_fn = agg_fn
def _forward(self, x_in) -> torch.Tensor:
y_target = _extract_targets(x_in, self.n_targets)
aggregate = self.agg_fn(y_target, dim=1)
return _repeat_along_output_chunk(aggregate, self.output_chunk_length)
[docs]class GlobalNaiveAggregate(_NoCovariatesMixin, _GlobalNaiveModel):
def __init__(
self,
input_chunk_length: int,
output_chunk_length: int,
output_chunk_shift: int = 0,
agg_fn: Union[str, Callable[[torch.Tensor, int], torch.Tensor]] = "mean",
**kwargs,
):
"""Global Naive Aggregate Model.
The model generates forecasts for each `series` as described below:
- take an aggregate (computed with `agg_fn`, default: mean) from each target component over the last
`input_chunk_length` points
- the forecast is the component aggregate repeated `output_chunk_length` times
Depending on the horizon `n` used when calling `model.predict()`, the forecasts are either:
- a constant aggregate value (default: mean) if `n <= output_chunk_length`, or
- a moving aggregate if `n > output_chunk_length`, as a result of the autoregressive prediction.
This model is equivalent to:
- :class:`~darts.models.forecasting.baselines.NaiveMean`, when `input_chunk_length` is equal to the length of
the input target `series`, and `agg_fn='mean'`.
- :class:`~darts.models.forecasting.baselines.NaiveMovingAverage`, with identical `input_chunk_length`
and `output_chunk_length=1`, and `agg_fn='mean'`.
.. note::
- Model checkpointing with `save_checkpoints=True`, and checkpoint loading with `load_from_checkpoint()`
and `load_weights_from_checkpoint()` are not supported for global naive models.
Parameters
----------
input_chunk_length
The length of the input sequence fed to the model.
output_chunk_length
The length of the emitted forecast and output sequence fed to the model.
output_chunk_shift
Optionally, the number of steps to shift the start of the output chunk into the future (relative to the
input chunk end). This will create a gap between the input and output. If the model supports
`future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start
`output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model
cannot generate autoregressive predictions (`n > output_chunk_length`).
agg_fn
The aggregation function to use. If a string, must be the name of `torch` function that can be imported
directly from `torch` (e.g. `"mean"` for `torch.mean`, `"sum"` for `torch.sum`).
The function must have the signature below. If a `Callable`, it must also have the signature below.
.. highlight:: python
.. code-block:: python
def agg_fn(x: torch.Tensor, dim: int, *args, **kwargs) -> torch.Tensor:
# x has shape `(batch size, input_chunk_length, n targets)`, `dim` is always `1`.
# function must return a tensor of shape `(batch size, n targets)`
return torch.mean(x, dim=dim)
..
**kwargs
Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and
Darts' :class:`TorchForecastingModel`.
Since naive models are not trained, the following parameters will have no effect:
`loss_fn`, `likelihood`, `optimizer_cls`, `optimizer_kwargs`, `lr_scheduler_cls`, `lr_scheduler_kwargs`,
`n_epochs`, `save_checkpoints`, and some of `pl_trainer_kwargs`.
Examples
--------
>>> from darts.datasets import IceCreamHeaterDataset
>>> from darts.models import GlobalNaiveAggregate
>>> # create list of multivariate series
>>> series_1 = IceCreamHeaterDataset().load()
>>> series_2 = series_1 + 100.
>>> series = [series_1, series_2]
>>> # predict 3 months, take mean over last 60 months
>>> horizon, icl = 3, 60
>>> # naive mean over last 60 months (with `output_chunk_length = horizon`)
>>> model = GlobalNaiveAggregate(input_chunk_length=icl, output_chunk_length=horizon)
>>> # predict after end of each multivariate series
>>> pred = model.fit(series).predict(n=horizon, series=series)
>>> [p.values() for p in pred]
[array([[29.666668, 50.983337],
[29.666668, 50.983337],
[29.666668, 50.983337]]), array([[129.66667, 150.98334],
[129.66667, 150.98334],
[129.66667, 150.98334]])]
>>> # naive moving mean (with `output_chunk_length < horizon`)
>>> model = GlobalNaiveAggregate(input_chunk_length=icl, output_chunk_length=1, agg_fn="mean")
>>> pred = model.fit(series).predict(n=horizon, series=series)
>>> [p.values() for p in pred]
[array([[29.666668, 50.983337],
[29.894447, 50.88306 ],
[30.109352, 50.98111 ]]), array([[129.66667, 150.98334],
[129.89445, 150.88307],
[130.10936, 150.98111]])]
>>> # naive moving sum (with `output_chunk_length < horizon`)
>>> model = GlobalNaiveAggregate(input_chunk_length=icl, output_chunk_length=1, agg_fn="sum")
>>> pred = model.fit(series).predict(n=horizon, series=series)
>>> [p.values() for p in pred]
[array([[ 1780., 3059.],
[ 3544., 6061.],
[ 7071., 12077.]]), array([[ 7780., 9059.],
[15444., 17961.],
[30771., 35777.]])]
"""
super().__init__(
input_chunk_length=input_chunk_length,
output_chunk_length=output_chunk_length,
output_chunk_shift=output_chunk_shift,
use_static_covariates=False,
**kwargs,
)
if isinstance(agg_fn, str):
agg_fn = getattr(torch, agg_fn, None)
if agg_fn is None:
raise_log(
ValueError(
"When `agg_fn` is a string, must be the name of a PyTorch function that "
"can be imported directly from `torch`. E.g., `'mean'` for `torch.mean`"
),
logger=logger,
)
if not isinstance(agg_fn, Callable):
raise_log(
ValueError("`agg_fn` must be a string or callable."),
logger=logger,
)
# check that `agg_fn` returns the expected output
batch_size, n_targets = 5, 3
x = torch.ones((batch_size, 4, n_targets))
try:
agg = agg_fn(x, dim=1)
assert isinstance(agg, torch.Tensor), (
"`agg_fn` output must be a torch Tensor."
)
assert agg.shape == (
batch_size,
n_targets,
), "Unexpected `agg_fn` output shape."
except Exception as err:
raise_log(
ValueError(
f"`agg_fn` sanity check raised the following error: ({err}) Read the parameter "
f"description to properly define the aggregation function."
),
logger=logger,
)
self.agg_fn = agg_fn
def _create_model(
self, train_sample: MixedCovariatesTrainTensorType
) -> _GlobalNaiveModule:
return _GlobalNaiveAggregateModule(agg_fn=self.agg_fn, **self.pl_module_params)
class _GlobalNaiveSeasonalModule(_GlobalNaiveModule):
def _forward(self, x_in) -> torch.Tensor:
y_target = _extract_targets(x_in, self.n_targets)
season = y_target[:, 0, :]
return _repeat_along_output_chunk(season, self.output_chunk_length)
[docs]class GlobalNaiveSeasonal(_NoCovariatesMixin, _GlobalNaiveModel):
def __init__(
self,
input_chunk_length: int,
output_chunk_length: int,
output_chunk_shift: int = 0,
**kwargs,
):
"""Global Naive Seasonal Model.
The model generates forecasts for each `series` as described below:
- take the value from each target component at the `input_chunk_length`th point before the end of the
target `series`.
- the forecast is the component value repeated `output_chunk_length` times.
Depending on the horizon `n` used when calling `model.predict()`, the forecasts are either:
- a constant value if `n <= output_chunk_length`, or
- a moving (seasonal) value if `n > output_chunk_length`, as a result of the autoregressive prediction.
This model is equivalent to:
- :class:`~darts.models.forecasting.baselines.NaiveSeasonal`, when `input_chunk_length` is equal to the length
of the input target `series` and `output_chunk_length=1`.
.. note::
- Model checkpointing with `save_checkpoints=True`, and checkpoint loading with `load_from_checkpoint()`
and `load_weights_from_checkpoint()` are not supported for global naive models.
Parameters
----------
input_chunk_length
The length of the input sequence fed to the model.
output_chunk_length
The length of the emitted forecast and output sequence fed to the model.
output_chunk_shift
Optionally, the number of steps to shift the start of the output chunk into the future (relative to the
input chunk end). This will create a gap between the input and output. If the model supports
`future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start
`output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model
cannot generate autoregressive predictions (`n > output_chunk_length`).
**kwargs
Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and
Darts' :class:`TorchForecastingModel`.
Since naive models are not trained, the following parameters will have no effect:
`loss_fn`, `likelihood`, `optimizer_cls`, `optimizer_kwargs`, `lr_scheduler_cls`, `lr_scheduler_kwargs`,
`n_epochs`, `save_checkpoints`, and some of `pl_trainer_kwargs`.
Examples
--------
>>> from darts.datasets import IceCreamHeaterDataset
>>> from darts.models import GlobalNaiveSeasonal
>>> # create list of multivariate series
>>> series_1 = IceCreamHeaterDataset().load()
>>> series_2 = series_1 + 100.
>>> series = [series_1, series_2]
>>> # predict 3 months, use value from 12 months ago
>>> horizon, icl = 3, 12
>>> # repeated seasonal value (with `output_chunk_length = horizon`)
>>> model = GlobalNaiveSeasonal(input_chunk_length=icl, output_chunk_length=horizon)
>>> # predict after end of each multivariate series
>>> pred = model.fit(series).predict(n=horizon, series=series)
>>> [p.values() for p in pred]
[array([[ 21., 100.],
[ 21., 100.],
[ 21., 100.]]), array([[121., 200.],
[121., 200.],
[121., 200.]])]
>>> # moving seasonal value (with `output_chunk_length < horizon`)
>>> model = GlobalNaiveSeasonal(input_chunk_length=icl, output_chunk_length=1)
>>> pred = model.fit(series).predict(n=horizon, series=series)
>>> [p.values() for p in pred]
[array([[ 21., 100.],
[ 21., 68.],
[ 24., 51.]]), array([[121., 200.],
[121., 168.],
[124., 151.]])]
"""
super().__init__(
input_chunk_length=input_chunk_length,
output_chunk_length=output_chunk_length,
output_chunk_shift=output_chunk_shift,
use_static_covariates=False,
**kwargs,
)
def _create_model(
self, train_sample: MixedCovariatesTrainTensorType
) -> _GlobalNaiveModule:
return _GlobalNaiveSeasonalModule(**self.pl_module_params)
class _GlobalNaiveDrift(_GlobalNaiveModule):
def _forward(self, x_in) -> torch.Tensor:
y_target = _extract_targets(x_in, self.n_targets)
slope = _repeat_along_output_chunk(
(y_target[:, -1, :] - y_target[:, 0, :]) / (self.input_chunk_length - 1),
self.output_chunk_length,
)
x = torch.arange(
start=self.output_chunk_shift + 1,
end=self.output_chunk_length + self.output_chunk_shift + 1,
device=self.device,
).view(1, self.output_chunk_length, 1, 1)
y_0 = y_target[:, -1, :].view(-1, 1, y_target.shape[-1], 1)
return slope * x + y_0
[docs]class GlobalNaiveDrift(_NoCovariatesMixin, _GlobalNaiveModel):
def __init__(
self,
input_chunk_length: int,
output_chunk_length: int,
output_chunk_shift: int = 0,
**kwargs,
):
"""Global Naive Drift Model.
The model generates forecasts for each `series` as described below:
- take the slope `m` from each target component between the `input_chunk_length`th and last point before the
end of the `series`.
- the forecast is `m * x + c` per component where `x` are the values
`range(1 + output_chunk_shift, 1 + output_chunk_length + output_chunk_shift)`, and `c` are the last values
from each target component.
Depending on the horizon `n` used when calling `model.predict()`, the forecasts are either:
- a linear drift if `n <= output_chunk_length`, or
- a moving drift if `n > output_chunk_length`, as a result of the autoregressive prediction.
This model is equivalent to:
- :class:`~darts.models.forecasting.baselines.NaiveDrift`, when `input_chunk_length` is equal to the length
of the input target `series` and `output_chunk_length=n`.
.. note::
- Model checkpointing with `save_checkpoints=True`, and checkpoint loading with `load_from_checkpoint()`
and `load_weights_from_checkpoint()` are not supported for global naive models.
Parameters
----------
input_chunk_length
The length of the input sequence fed to the model.
output_chunk_length
The length of the emitted forecast and output sequence fed to the model.
output_chunk_shift
Optionally, the number of steps to shift the start of the output chunk into the future (relative to the
input chunk end). This will create a gap between the input and output. If the model supports
`future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start
`output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model
cannot generate autoregressive predictions (`n > output_chunk_length`).
**kwargs
Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and
Darts' :class:`TorchForecastingModel`.
Since naive models are not trained, the following parameters will have no effect:
`loss_fn`, `likelihood`, `optimizer_cls`, `optimizer_kwargs`, `lr_scheduler_cls`, `lr_scheduler_kwargs`,
`n_epochs`, `save_checkpoints`, and some of `pl_trainer_kwargs`.
Examples
--------
>>> from darts.datasets import IceCreamHeaterDataset
>>> from darts.models import GlobalNaiveDrift
>>> # create list of multivariate series
>>> series_1 = IceCreamHeaterDataset().load()
>>> series_2 = series_1 + 100.
>>> series = [series_1, series_2]
>>> # predict 3 months, use drift over the last 60 months
>>> horizon, icl = 3, 60
>>> # linear drift (with `output_chunk_length = horizon`)
>>> model = GlobalNaiveDrift(input_chunk_length=icl, output_chunk_length=horizon)
>>> # predict after end of each multivariate series
>>> pred = model.fit(series).predict(n=horizon, series=series)
>>> [p.values() for p in pred]
[array([[24.135593, 74.28814 ],
[24.271187, 74.57627 ],
[24.40678 , 74.86441 ]]), array([[124.13559, 174.28813],
[124.27119, 174.57628],
[124.40678, 174.86441]])]
>>> # moving drift (with `output_chunk_length < horizon`)
>>> model = GlobalNaiveDrift(input_chunk_length=icl, output_chunk_length=1)
>>> pred = model.fit(series).predict(n=horizon, series=series)
>>> [p.values() for p in pred]
[array([[24.135593, 74.28814 ],
[24.256536, 74.784546],
[24.34563 , 75.45886 ]]), array([[124.13559, 174.28813],
[124.25653, 174.78455],
[124.34563, 175.45886]])]
"""
super().__init__(
input_chunk_length=input_chunk_length,
output_chunk_length=output_chunk_length,
output_chunk_shift=output_chunk_shift,
use_static_covariates=False,
**kwargs,
)
def _create_model(
self, train_sample: MixedCovariatesTrainTensorType
) -> _GlobalNaiveModule:
return _GlobalNaiveDrift(**self.pl_module_params)