Source code for darts.models.forecasting.global_baseline_models

"""
Global Baseline Models (Naive)
------------------------------

A collection of simple benchmark models working with univariate, multivariate, single, and multiple series.

- :class:`GlobalNaiveAggregate`
- :class:`GlobalNaiveDrift`
- :class:`GlobalNaiveSeasonal`
"""

from abc import ABC, abstractmethod
from collections.abc import Sequence
from typing import Callable, Optional, Union

import torch

from darts import TimeSeries
from darts.logging import get_logger, raise_log
from darts.models.forecasting.pl_forecasting_module import (
    PLMixedCovariatesModule,
    io_processor,
)
from darts.models.forecasting.torch_forecasting_model import (
    MixedCovariatesTorchModel,
    TorchForecastingModel,
)
from darts.utils.data.sequential_dataset import MixedCovariatesSequentialDataset
from darts.utils.data.training_dataset import MixedCovariatesTrainingDataset

MixedCovariatesTrainTensorType = tuple[
    torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor
]


logger = get_logger(__name__)


def _extract_targets(batch: tuple[torch.Tensor], n_targets: int):
    """Extracts and returns the target components from an input batch

    Parameters
    ----------
    batch
        The input batch tuple for the forward method. Has elements `(x_past, x_future, x_static)`.
    n_targets
        The number of target components to extract.
    """
    return batch[0][:, :, :n_targets]


def _repeat_along_output_chunk(x: torch.Tensor, ocl: int) -> torch.Tensor:
    """Expands a tensor `x` of shape (batch size, n components) to a tensor of shape
    (batch size, `ocl`, n target components, 1 (n samples)), by repeating the values
    along the `output_chunk_length` axis.

    Parameters
    ----------
    x
        An input tensor of shape (batch size, n target components)
    ocl
        The output_chunk_length.
    """
    return x.view(-1, 1, x[0].shape[-1], 1).expand(-1, ocl, -1, -1)


class _GlobalNaiveModule(PLMixedCovariatesModule, ABC):
    def __init__(self, *args, **kwargs):
        """Pytorch module for implementing naive models.

        Implement your own naive module by subclassing from `_GlobalNaiveModule`, and implement the
        logic for prediction in the private `_forward` method.
        """
        super().__init__(*args, **kwargs)

    @io_processor
    def forward(
        self, x_in: tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]
    ) -> torch.Tensor:
        """Naive model forward pass.

        Parameters
        ----------
        x_in
            comes as tuple `(x_past, x_future, x_static)` where `x_past` is the input/past chunk and `x_future`
            is the output/future chunk. Input dimensions are `(batch_size, time_steps, components)`

        Returns
        -------
        torch.Tensor
            The output Tensor of shape `(batch_size, output_chunk_length, output_dim, nr_params)`
        """
        return self._forward(x_in)

    @abstractmethod
    def _forward(self, x_in) -> torch.Tensor:
        """Private method to implement the forward method in the subclasses."""
        pass


class _GlobalNaiveModel(MixedCovariatesTorchModel, ABC):
    def __init__(
        self,
        input_chunk_length: int,
        output_chunk_length: int,
        output_chunk_shift: int = 0,
        use_static_covariates: bool = True,
        **kwargs,
    ):
        """Base class for global naive models. The naive models inherit from `MixedCovariatesTorchModel` giving access
        to past, future, and static covariates in the model `forward()` method. This allows to create custom models
        naive models which can make use of the covariates. The built-in naive models will not use this information.

        The naive models do not have to be trained before generating predictions.

        To add a new naive model:
        - subclass from `_GlobalNaiveModel` with implementation of private method `_create_model` that creates an
            object of:
        - subclass from `_GlobalNaiveModule` with implementation of private method `_forward`

        .. note::
            - Model checkpointing with `save_checkpoints=True`, and checkpoint loading with `load_from_checkpoint()`
              and `load_weights_from_checkpoint()` are not supported for global naive models.

        Parameters
        ----------
        input_chunk_length
            The length of the input sequence fed to the model.
        output_chunk_length
            The length of the emitted forecast and output sequence fed to the model.
        output_chunk_shift
            Optionally, the number of steps to shift the start of the output chunk into the future (relative to the
            input chunk end). This will create a gap between the input and output. If the model supports
            `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start
            `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model
            cannot generate autoregressive predictions (`n > output_chunk_length`).
        use_static_covariates
            Whether the model should use static covariate information in case the input `series` passed to ``fit()``
            contain static covariates. If ``True``, and static covariates are available at fitting time, will enforce
            that all target `series` have the same static covariate dimensionality in ``fit()`` and ``predict()``.
        **kwargs
            Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and
            Darts' :class:`TorchForecastingModel`.
            Since naive models are not trained, the following parameters will have no effect:
            `loss_fn`, `likelihood`, `optimizer_cls`, `optimizer_kwargs`, `lr_scheduler_cls`, `lr_scheduler_kwargs`,
            `n_epochs`, `save_checkpoints`, and some of `pl_trainer_kwargs`.
        """
        super().__init__(**self._extract_torch_model_params(**self.model_params))

        # extract pytorch lightning module kwargs
        self.pl_module_params = self._extract_pl_module_params(**self.model_params)

        self._considers_static_covariates = use_static_covariates

    def fit(
        self,
        series: Union[TimeSeries, Sequence[TimeSeries]],
        past_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None,
        future_covariates: Optional[Union[TimeSeries, Sequence[TimeSeries]]] = None,
        *args,
        **kwargs,
    ) -> TorchForecastingModel:
        """Fit/train the model on a (or potentially multiple) series.
        This method is only implemented for naive baseline models to provide a unified fit/predict API with other
        forecasting models.

        The model is not really trained on the input, but `fit()` is used to setup the model based on the input series.
        Also, it stores the training `series` in case only a single `TimeSeries` was passed. This allows to call
        `predict()` without having to pass the single `series`.

        Parameters
        ----------
        series
            A series or sequence of series serving as target (i.e. what the model will be trained to forecast)
        past_covariates
            Optionally, a series or sequence of series specifying past-observed covariates
        future_covariates
            Optionally, a series or sequence of series specifying future-known covariates
        **kwargs
            Optionally, some keyword arguments.

        Returns
        -------
        self
            Fitted model.
        """
        return super().fit(series, past_covariates, future_covariates, *args, **kwargs)

    @staticmethod
    def load_from_checkpoint(
        model_name: str,
        work_dir: str = None,
        file_name: str = None,
        best: bool = True,
        **kwargs,
    ) -> "TorchForecastingModel":
        raise_log(
            NotImplementedError(
                "GlobalNaiveModels do not support loading from checkpoint since they are never trained."
            ),
            logger=logger,
        )

    def load_weights_from_checkpoint(
        self,
        model_name: str = None,
        work_dir: str = None,
        file_name: str = None,
        best: bool = True,
        strict: bool = True,
        load_encoders: bool = True,
        skip_checks: bool = False,
        **kwargs,
    ):
        raise_log(
            NotImplementedError(
                "GlobalNaiveModels do not support weights loading since they do not have any weights/parameters."
            ),
            logger=logger,
        )

    @abstractmethod
    def _create_model(
        self, train_sample: MixedCovariatesTrainTensorType
    ) -> _GlobalNaiveModule:
        pass

    def _verify_predict_sample(self, predict_sample: tuple):
        # naive models do not have to be trained, predict sample does not
        # have to match the training sample
        pass

    def supports_likelihood_parameter_prediction(self) -> bool:
        return False

    def supports_probabilistic_prediction(self) -> bool:
        return False

    @property
    def supports_static_covariates(self) -> bool:
        return True

    @property
    def supports_multivariate(self) -> bool:
        return True

    @property
    def _requires_training(self) -> bool:
        # naive models do not have to be trained.
        return False

    def _build_train_dataset(
        self,
        target: Sequence[TimeSeries],
        past_covariates: Optional[Sequence[TimeSeries]],
        future_covariates: Optional[Sequence[TimeSeries]],
        sample_weight: Optional[Sequence[TimeSeries]],
        max_samples_per_ts: Optional[int],
    ) -> MixedCovariatesTrainingDataset:
        return MixedCovariatesSequentialDataset(
            target_series=target,
            past_covariates=past_covariates,
            future_covariates=future_covariates,
            input_chunk_length=self.input_chunk_length,
            output_chunk_length=0,
            output_chunk_shift=self.output_chunk_shift,
            max_samples_per_ts=max_samples_per_ts,
            use_static_covariates=self.uses_static_covariates,
            sample_weight=sample_weight,
        )


class _NoCovariatesMixin:
    @property
    def supports_static_covariates(self) -> bool:
        return False

    @property
    def supports_future_covariates(self) -> bool:
        return False

    @property
    def supports_past_covariates(self) -> bool:
        return False


class _GlobalNaiveAggregateModule(_GlobalNaiveModule):
    def __init__(
        self, agg_fn: Callable[[torch.Tensor, int], torch.Tensor], *args, **kwargs
    ):
        super().__init__(*args, **kwargs)
        self.agg_fn = agg_fn

    def _forward(self, x_in) -> torch.Tensor:
        y_target = _extract_targets(x_in, self.n_targets)
        aggregate = self.agg_fn(y_target, dim=1)
        return _repeat_along_output_chunk(aggregate, self.output_chunk_length)


[docs]class GlobalNaiveAggregate(_NoCovariatesMixin, _GlobalNaiveModel): def __init__( self, input_chunk_length: int, output_chunk_length: int, output_chunk_shift: int = 0, agg_fn: Union[str, Callable[[torch.Tensor, int], torch.Tensor]] = "mean", **kwargs, ): """Global Naive Aggregate Model. The model generates forecasts for each `series` as described below: - take an aggregate (computed with `agg_fn`, default: mean) from each target component over the last `input_chunk_length` points - the forecast is the component aggregate repeated `output_chunk_length` times Depending on the horizon `n` used when calling `model.predict()`, the forecasts are either: - a constant aggregate value (default: mean) if `n <= output_chunk_length`, or - a moving aggregate if `n > output_chunk_length`, as a result of the autoregressive prediction. This model is equivalent to: - :class:`~darts.models.forecasting.baselines.NaiveMean`, when `input_chunk_length` is equal to the length of the input target `series`, and `agg_fn='mean'`. - :class:`~darts.models.forecasting.baselines.NaiveMovingAverage`, with identical `input_chunk_length` and `output_chunk_length=1`, and `agg_fn='mean'`. .. note:: - Model checkpointing with `save_checkpoints=True`, and checkpoint loading with `load_from_checkpoint()` and `load_weights_from_checkpoint()` are not supported for global naive models. Parameters ---------- input_chunk_length The length of the input sequence fed to the model. output_chunk_length The length of the emitted forecast and output sequence fed to the model. output_chunk_shift Optionally, the number of steps to shift the start of the output chunk into the future (relative to the input chunk end). This will create a gap between the input and output. If the model supports `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model cannot generate autoregressive predictions (`n > output_chunk_length`). agg_fn The aggregation function to use. If a string, must be the name of `torch` function that can be imported directly from `torch` (e.g. `"mean"` for `torch.mean`, `"sum"` for `torch.sum`). The function must have the signature below. If a `Callable`, it must also have the signature below. .. highlight:: python .. code-block:: python def agg_fn(x: torch.Tensor, dim: int, *args, **kwargs) -> torch.Tensor: # x has shape `(batch size, input_chunk_length, n targets)`, `dim` is always `1`. # function must return a tensor of shape `(batch size, n targets)` return torch.mean(x, dim=dim) .. **kwargs Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and Darts' :class:`TorchForecastingModel`. Since naive models are not trained, the following parameters will have no effect: `loss_fn`, `likelihood`, `optimizer_cls`, `optimizer_kwargs`, `lr_scheduler_cls`, `lr_scheduler_kwargs`, `n_epochs`, `save_checkpoints`, and some of `pl_trainer_kwargs`. Examples -------- >>> from darts.datasets import IceCreamHeaterDataset >>> from darts.models import GlobalNaiveAggregate >>> # create list of multivariate series >>> series_1 = IceCreamHeaterDataset().load() >>> series_2 = series_1 + 100. >>> series = [series_1, series_2] >>> # predict 3 months, take mean over last 60 months >>> horizon, icl = 3, 60 >>> # naive mean over last 60 months (with `output_chunk_length = horizon`) >>> model = GlobalNaiveAggregate(input_chunk_length=icl, output_chunk_length=horizon) >>> # predict after end of each multivariate series >>> pred = model.fit(series).predict(n=horizon, series=series) >>> [p.values() for p in pred] [array([[29.666668, 50.983337], [29.666668, 50.983337], [29.666668, 50.983337]]), array([[129.66667, 150.98334], [129.66667, 150.98334], [129.66667, 150.98334]])] >>> # naive moving mean (with `output_chunk_length < horizon`) >>> model = GlobalNaiveAggregate(input_chunk_length=icl, output_chunk_length=1, agg_fn="mean") >>> pred = model.fit(series).predict(n=horizon, series=series) >>> [p.values() for p in pred] [array([[29.666668, 50.983337], [29.894447, 50.88306 ], [30.109352, 50.98111 ]]), array([[129.66667, 150.98334], [129.89445, 150.88307], [130.10936, 150.98111]])] >>> # naive moving sum (with `output_chunk_length < horizon`) >>> model = GlobalNaiveAggregate(input_chunk_length=icl, output_chunk_length=1, agg_fn="sum") >>> pred = model.fit(series).predict(n=horizon, series=series) >>> [p.values() for p in pred] [array([[ 1780., 3059.], [ 3544., 6061.], [ 7071., 12077.]]), array([[ 7780., 9059.], [15444., 17961.], [30771., 35777.]])] """ super().__init__( input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, output_chunk_shift=output_chunk_shift, use_static_covariates=False, **kwargs, ) if isinstance(agg_fn, str): agg_fn = getattr(torch, agg_fn, None) if agg_fn is None: raise_log( ValueError( "When `agg_fn` is a string, must be the name of a PyTorch function that " "can be imported directly from `torch`. E.g., `'mean'` for `torch.mean`" ), logger=logger, ) if not isinstance(agg_fn, Callable): raise_log( ValueError("`agg_fn` must be a string or callable."), logger=logger, ) # check that `agg_fn` returns the expected output batch_size, n_targets = 5, 3 x = torch.ones((batch_size, 4, n_targets)) try: agg = agg_fn(x, dim=1) assert isinstance(agg, torch.Tensor), ( "`agg_fn` output must be a torch Tensor." ) assert agg.shape == ( batch_size, n_targets, ), "Unexpected `agg_fn` output shape." except Exception as err: raise_log( ValueError( f"`agg_fn` sanity check raised the following error: ({err}) Read the parameter " f"description to properly define the aggregation function." ), logger=logger, ) self.agg_fn = agg_fn def _create_model( self, train_sample: MixedCovariatesTrainTensorType ) -> _GlobalNaiveModule: return _GlobalNaiveAggregateModule(agg_fn=self.agg_fn, **self.pl_module_params)
class _GlobalNaiveSeasonalModule(_GlobalNaiveModule): def _forward(self, x_in) -> torch.Tensor: y_target = _extract_targets(x_in, self.n_targets) season = y_target[:, 0, :] return _repeat_along_output_chunk(season, self.output_chunk_length)
[docs]class GlobalNaiveSeasonal(_NoCovariatesMixin, _GlobalNaiveModel): def __init__( self, input_chunk_length: int, output_chunk_length: int, output_chunk_shift: int = 0, **kwargs, ): """Global Naive Seasonal Model. The model generates forecasts for each `series` as described below: - take the value from each target component at the `input_chunk_length`th point before the end of the target `series`. - the forecast is the component value repeated `output_chunk_length` times. Depending on the horizon `n` used when calling `model.predict()`, the forecasts are either: - a constant value if `n <= output_chunk_length`, or - a moving (seasonal) value if `n > output_chunk_length`, as a result of the autoregressive prediction. This model is equivalent to: - :class:`~darts.models.forecasting.baselines.NaiveSeasonal`, when `input_chunk_length` is equal to the length of the input target `series` and `output_chunk_length=1`. .. note:: - Model checkpointing with `save_checkpoints=True`, and checkpoint loading with `load_from_checkpoint()` and `load_weights_from_checkpoint()` are not supported for global naive models. Parameters ---------- input_chunk_length The length of the input sequence fed to the model. output_chunk_length The length of the emitted forecast and output sequence fed to the model. output_chunk_shift Optionally, the number of steps to shift the start of the output chunk into the future (relative to the input chunk end). This will create a gap between the input and output. If the model supports `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model cannot generate autoregressive predictions (`n > output_chunk_length`). **kwargs Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and Darts' :class:`TorchForecastingModel`. Since naive models are not trained, the following parameters will have no effect: `loss_fn`, `likelihood`, `optimizer_cls`, `optimizer_kwargs`, `lr_scheduler_cls`, `lr_scheduler_kwargs`, `n_epochs`, `save_checkpoints`, and some of `pl_trainer_kwargs`. Examples -------- >>> from darts.datasets import IceCreamHeaterDataset >>> from darts.models import GlobalNaiveSeasonal >>> # create list of multivariate series >>> series_1 = IceCreamHeaterDataset().load() >>> series_2 = series_1 + 100. >>> series = [series_1, series_2] >>> # predict 3 months, use value from 12 months ago >>> horizon, icl = 3, 12 >>> # repeated seasonal value (with `output_chunk_length = horizon`) >>> model = GlobalNaiveSeasonal(input_chunk_length=icl, output_chunk_length=horizon) >>> # predict after end of each multivariate series >>> pred = model.fit(series).predict(n=horizon, series=series) >>> [p.values() for p in pred] [array([[ 21., 100.], [ 21., 100.], [ 21., 100.]]), array([[121., 200.], [121., 200.], [121., 200.]])] >>> # moving seasonal value (with `output_chunk_length < horizon`) >>> model = GlobalNaiveSeasonal(input_chunk_length=icl, output_chunk_length=1) >>> pred = model.fit(series).predict(n=horizon, series=series) >>> [p.values() for p in pred] [array([[ 21., 100.], [ 21., 68.], [ 24., 51.]]), array([[121., 200.], [121., 168.], [124., 151.]])] """ super().__init__( input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, output_chunk_shift=output_chunk_shift, use_static_covariates=False, **kwargs, ) def _create_model( self, train_sample: MixedCovariatesTrainTensorType ) -> _GlobalNaiveModule: return _GlobalNaiveSeasonalModule(**self.pl_module_params)
class _GlobalNaiveDrift(_GlobalNaiveModule): def _forward(self, x_in) -> torch.Tensor: y_target = _extract_targets(x_in, self.n_targets) slope = _repeat_along_output_chunk( (y_target[:, -1, :] - y_target[:, 0, :]) / (self.input_chunk_length - 1), self.output_chunk_length, ) x = torch.arange( start=self.output_chunk_shift + 1, end=self.output_chunk_length + self.output_chunk_shift + 1, device=self.device, ).view(1, self.output_chunk_length, 1, 1) y_0 = y_target[:, -1, :].view(-1, 1, y_target.shape[-1], 1) return slope * x + y_0
[docs]class GlobalNaiveDrift(_NoCovariatesMixin, _GlobalNaiveModel): def __init__( self, input_chunk_length: int, output_chunk_length: int, output_chunk_shift: int = 0, **kwargs, ): """Global Naive Drift Model. The model generates forecasts for each `series` as described below: - take the slope `m` from each target component between the `input_chunk_length`th and last point before the end of the `series`. - the forecast is `m * x + c` per component where `x` are the values `range(1 + output_chunk_shift, 1 + output_chunk_length + output_chunk_shift)`, and `c` are the last values from each target component. Depending on the horizon `n` used when calling `model.predict()`, the forecasts are either: - a linear drift if `n <= output_chunk_length`, or - a moving drift if `n > output_chunk_length`, as a result of the autoregressive prediction. This model is equivalent to: - :class:`~darts.models.forecasting.baselines.NaiveDrift`, when `input_chunk_length` is equal to the length of the input target `series` and `output_chunk_length=n`. .. note:: - Model checkpointing with `save_checkpoints=True`, and checkpoint loading with `load_from_checkpoint()` and `load_weights_from_checkpoint()` are not supported for global naive models. Parameters ---------- input_chunk_length The length of the input sequence fed to the model. output_chunk_length The length of the emitted forecast and output sequence fed to the model. output_chunk_shift Optionally, the number of steps to shift the start of the output chunk into the future (relative to the input chunk end). This will create a gap between the input and output. If the model supports `future_covariates`, the future values are extracted from the shifted output chunk. Predictions will start `output_chunk_shift` steps after the end of the target `series`. If `output_chunk_shift` is set, the model cannot generate autoregressive predictions (`n > output_chunk_length`). **kwargs Optional arguments to initialize the pytorch_lightning.Module, pytorch_lightning.Trainer, and Darts' :class:`TorchForecastingModel`. Since naive models are not trained, the following parameters will have no effect: `loss_fn`, `likelihood`, `optimizer_cls`, `optimizer_kwargs`, `lr_scheduler_cls`, `lr_scheduler_kwargs`, `n_epochs`, `save_checkpoints`, and some of `pl_trainer_kwargs`. Examples -------- >>> from darts.datasets import IceCreamHeaterDataset >>> from darts.models import GlobalNaiveDrift >>> # create list of multivariate series >>> series_1 = IceCreamHeaterDataset().load() >>> series_2 = series_1 + 100. >>> series = [series_1, series_2] >>> # predict 3 months, use drift over the last 60 months >>> horizon, icl = 3, 60 >>> # linear drift (with `output_chunk_length = horizon`) >>> model = GlobalNaiveDrift(input_chunk_length=icl, output_chunk_length=horizon) >>> # predict after end of each multivariate series >>> pred = model.fit(series).predict(n=horizon, series=series) >>> [p.values() for p in pred] [array([[24.135593, 74.28814 ], [24.271187, 74.57627 ], [24.40678 , 74.86441 ]]), array([[124.13559, 174.28813], [124.27119, 174.57628], [124.40678, 174.86441]])] >>> # moving drift (with `output_chunk_length < horizon`) >>> model = GlobalNaiveDrift(input_chunk_length=icl, output_chunk_length=1) >>> pred = model.fit(series).predict(n=horizon, series=series) >>> [p.values() for p in pred] [array([[24.135593, 74.28814 ], [24.256536, 74.784546], [24.34563 , 75.45886 ]]), array([[124.13559, 174.28813], [124.25653, 174.78455], [124.34563, 175.45886]])] """ super().__init__( input_chunk_length=input_chunk_length, output_chunk_length=output_chunk_length, output_chunk_shift=output_chunk_shift, use_static_covariates=False, **kwargs, ) def _create_model( self, train_sample: MixedCovariatesTrainTensorType ) -> _GlobalNaiveModule: return _GlobalNaiveDrift(**self.pl_module_params)