Source code for vegans.models.unconditional.AbstractGANGAE

import torch

from torch.nn import BCELoss
from vegans.utils.utils import WassersteinLoss
from vegans.utils.networks import Generator, Adversary, Encoder
from vegans.models.unconditional.AbstractGenerativeModel import AbstractGenerativeModel


[docs]class AbstractGANGAE(AbstractGenerativeModel): """ Abstract class for GAN with structure of one generator, one discriminator / critic and one encoder. Examples are the `LRGAN`, `VAEGAN` and `BicycleGAN`. Parameters ---------- generator: nn.Module Generator architecture. Produces output in the real space. adversary: nn.Module Adversary architecture. Produces predictions for real and fake samples to differentiate them. encoder : nn.Module Encoder architecture. Produces predictions in the latent space. x_dim : list, tuple Number of the output dimensions of the generator and input dimension of the discriminator / critic. In the case of images this will be [nr_channels, nr_height_pixels, nr_width_pixels]. z_dim : int, list, tuple Number of the latent dimensions for the generator input. Might have dimensions of an image. optim : dict or torch.optim Optimizer used for each network. Could be either an optimizer from torch.optim or a dictionary with network name keys and torch.optim as value, i.e. {"Generator": torch.optim.Adam}. optim_kwargs : dict Optimizer keyword arguments used for each network. Must be a dictionary with network name keys and dictionary with keyword arguments as value, i.e. {"Generator": {"lr": 0.0001}}. feature_layer : torch.nn.* Output layer used to compute the feature loss. Should be from either the discriminator or critic. If `feature_layer` is not None, the original generator loss is replaced by a feature loss, introduced [here](https://arxiv.org/abs/1606.03498v1). fixed_noise_size : int Number of images shown when logging. The fixed noise is used to produce the images in the folder/images subdirectory, the tensorboard images tab and the samples in get_training_results(). lambda_grad: float Weight for the reconstruction loss of the gradients. Pushes the norm of the gradients to 1. device : string Device used while training the model. Either "cpu" or "cuda". ngpu : int Number of gpus used during training if device == "cuda". folder : string Creates a folder in the current working directory with this name. All relevant files like summary, images, models and tensorboard output are written there. Existing folders are never overwritten or deleted. If a folder with the same name already exists a time stamp is appended to make it unique. """ ######################################################################### # Actions before training ######################################################################### def __init__( self, generator, adversary, encoder, x_dim, z_dim, optim=None, optim_kwargs=None, adv_type="Discriminator", feature_layer=None, fixed_noise_size=32, device=None, folder=None, ngpu=0, secure=True, _called_from_conditional=False): self.adv_type = adv_type self.generator = Generator(generator, input_size=z_dim, device=device, ngpu=ngpu, secure=secure) self.adversary = Adversary(adversary, input_size=x_dim, adv_type=adv_type, device=device, ngpu=ngpu, secure=secure) self.encoder = Encoder(encoder, input_size=x_dim, device=device, ngpu=ngpu, secure=secure) self.neural_nets = { "Generator": self.generator, "Adversary": self.adversary, "Encoder": self.encoder } super().__init__( x_dim=x_dim, z_dim=z_dim, optim=optim, optim_kwargs=optim_kwargs, feature_layer=feature_layer, fixed_noise_size=fixed_noise_size, device=device, ngpu=ngpu, folder=folder, secure=secure ) self.hyperparameters["adv_type"] = adv_type if not _called_from_conditional and self.secure: assert self.generator.output_size == self.x_dim, ( "Generator output shape must be equal to x_dim. {} vs. {}.".format(self.generator.output_size, self.x_dim) ) def _define_loss(self): if self.adv_type == "Discriminator": loss_functions = {"Generator": BCELoss(), "Adversary": BCELoss()} elif self.adv_type == "Critic": loss_functions = {"Generator": WassersteinLoss(), "Adversary": WassersteinLoss()} else: raise NotImplementedError("'adv_type' must be one of Discriminator or Critic.") return loss_functions ######################################################################### # Actions during training #########################################################################
[docs] def calculate_losses(self, X_batch, Z_batch, who=None): """ Calculates the losses for GANs using a 1v1 architecture. This method is called within the `AbstractGenerativeModel` main `fit()` loop. Parameters ---------- X_batch : torch.Tensor Current x batch. Z_batch : torch.Tensor Current z batch. who : None, optional Name of the network that should be trained. """ if who == "Generator": losses = self._calculate_generator_loss(X_batch=X_batch, Z_batch=Z_batch) elif who == "Adversary": losses = self._calculate_adversary_loss(X_batch=X_batch, Z_batch=Z_batch) elif who == "Encoder": losses = self._calculate_encoder_loss(X_batch=X_batch, Z_batch=Z_batch) else: losses = self._calculate_generator_loss(X_batch=X_batch, Z_batch=Z_batch) losses.update(self._calculate_adversary_loss(X_batch=X_batch, Z_batch=Z_batch)) losses.update(self._calculate_encoder_loss(X_batch=X_batch, Z_batch=Z_batch)) return losses
def _step(self, who=None): if who is not None: self.optimizers[who].step() if who == "Adversary": if self.adv_type == "Critic": for p in self.adversary.parameters(): p.data.clamp_(-0.01, 0.01) else: [optimizer.step() for _, optimizer in self.optimizers.items()] ######################################################################### # Utility functions #########################################################################
[docs] def encode(self, x): return self.encoder(x)