Pipeline¶
- class darts.dataprocessing.pipeline.Pipeline(transformers, copy=False, verbose=None, n_jobs=None)[source]¶
Bases:
object
Pipeline to combine multiple data transformers, chaining them together.
- Parameters
transformers (
Sequence
[BaseDataTransformer
]) – Sequence of data transformers.copy (
bool
) – If set makes a (deep) copy of each data transformer before adding them to the pipelinen_jobs (
Optional
[int
]) – The number of jobs to run in parallel. Parallel jobs are created only when aSequence[TimeSeries]
is passed as input to a method, parallelising operations regarding differentTimeSeries
. Defaults to 1 (sequential). Setting the parameter to -1 means using all the available processors. Note: for a small amount of data, the parallelisation overhead could end up increasing the total required amount of time. Note: this parameter will overwrite the value set in each single transformer. Leave this parameter set to None for keeping the original transformers’ configurations.verbose (
Optional
[bool
]) – Whether to print progress of the operations. Note: this parameter will overwrite the value set in each single transformer. Leave this parameter set to None for keeping the transformers configurations.
Examples
>>> import numpy as np >>> from darts import TimeSeries >>> from darts.datasets import AirPassengersDataset >>> from darts.dataprocessing.transformers import Scaler, MissingValuesFiller >>> from darts.dataprocessing.pipeline import Pipeline >>> values = np.arange(start=0, stop=12.5, step=2.5) >>> values[1:3] = np.nan >>> series = series.from_values(values) >>> pipeline = Pipeline([MissingValuesFiller(), Scaler()]) >>> series_transformed = pipeline.fit_transform(series) <TimeSeries (DataArray) (time: 5, component: 1, sample: 1)> array([[[0. ]], [[0.25]], [[0.5 ]], [[0.75]], [[1. ]]]) Coordinates: * time (time) int64 0 1 2 3 4 * component (component) object '0' Dimensions without coordinates: sample
Methods
fit
(data)Fit all fittable transformers in pipeline.
fit_transform
(data)For each data transformer in the pipeline, first fit the data if transformer is fittable then transform data using fitted transformer.
inverse_transform
(data[, partial])For each data transformer in the pipeline, inverse-transform data.
Returns whether the pipeline is invertible or not.
transform
(data)For each data transformer in pipeline transform data.
- fit(data)[source]¶
Fit all fittable transformers in pipeline.
- Parameters
data (
Union
[TimeSeries
,Sequence
[TimeSeries
]]) – (Sequence of) TimeSeries to fit on.
- fit_transform(data)[source]¶
For each data transformer in the pipeline, first fit the data if transformer is fittable then transform data using fitted transformer. The transformed data is then passed to next transformer.
- Parameters
data (
Union
[TimeSeries
,Sequence
[TimeSeries
]]) – (Sequence of) TimeSeries to fit and transform on.- Returns
Transformed data.
- Return type
Union[TimeSeries, Sequence[TimeSeries]]
- inverse_transform(data, partial=False)[source]¶
For each data transformer in the pipeline, inverse-transform data. Then inverse transformed data is passed to the next transformer. Transformers are traversed in reverse order. Raises value error if not all of the transformers are invertible and
partial
is set to False. Setpartial
to True for inverting only the InvertibleDataTransformer in the pipeline.- Parameters
data (
Union
[TimeSeries
,Sequence
[TimeSeries
]]) – (Sequence of) TimeSeries to be inverse transformed.partial (
bool
) – If set to True, the inverse transformation is applied even if the pipeline is not fully invertible, calling inverse_transform() only on the `InvertibleDataTransformer`s
- Returns
Inverse transformed data.
- Return type
Union[TimeSeries, Sequence[TimeSeries]]
- invertible()[source]¶
Returns whether the pipeline is invertible or not. A pipeline is invertible if all transformers in the pipeline are themselves invertible.
- Returns
True if the pipeline is invertible, False otherwise
- Return type
bool
- transform(data)[source]¶
For each data transformer in pipeline transform data. Then transformed data is passed to next transformer.
- Parameters
data (
Union
[TimeSeries
,Sequence
[TimeSeries
]]) – (Sequence of) TimeSeries to be transformed.- Returns
Transformed data.
- Return type
Union[TimeSeries, Sequence[TimeSeries]]