Regression ensemble model¶
An ensemble model which uses a regression model to compute the ensemble forecast.
- class darts.models.forecasting.regression_ensemble_model.RegressionEnsembleModel(forecasting_models, regression_train_n_points, regression_model=None, regression_train_num_samples=1, regression_train_samples_reduction='median', train_forecasting_models=True, train_using_historical_forecasts=False, show_warnings=True)[source]¶
Bases:
EnsembleModel
Use a regression model for ensembling individual models’ predictions using the stacking technique [1].
The provided regression model must implement
fit()
andpredict()
methods (e.g. scikit-learn regression models). Note that here the regression model is used to learn how to best ensemble the individual forecasting models’ forecasts. It is not the same usage of regression as inRegressionModel
, where the regression model is used to produce forecasts based on the lagged series.If future_covariates or past_covariates are provided at training or inference time, they will be passed only to the forecasting models supporting them.
If forecasting_models contains exclusively GlobalForecastingModels, they can be pre-trained. Otherwise, the forecasting_models must be untrained.
The regression model does not leverage the covariates passed to
fit()
andpredict()
.- Parameters
forecasting_models (
list
[ForecastingModel
]) – List of forecasting models whose predictions to ensembleregression_train_n_points (
int
) – The number of points per series to use to train the regression model. Can be set to -1 to use the entire series to train the regressor if forecasting_models are already fitted and train_forecasting_models=False.regression_model –
Any regression model with
predict()
andfit()
methods (e.g. from scikit-learn) Default:darts.models.LinearRegressionModel(fit_intercept=False)
Note
if regression_model is probabilistic, the RegressionEnsembleModel will also be probabilistic.
regression_train_num_samples (
int
) –Number of prediction samples from each forecasting model to train the regression model (samples are averaged). Should be set to 1 for deterministic models. Default: 1.
Note
if forecasting_models contains a mix of probabilistic and deterministic models, `regression_train_num_samples will be passed only to the probabilistic ones.
regression_train_samples_reduction (
Union
[str
,float
,None
]) – If forecasting_models are probabilistic and regression_train_num_samples > 1, method used to reduce the samples before passing them to the regression model. Possible values: “mean”, “median” or float value corresponding to the desired quantile. Default: “median”train_forecasting_models (
bool
) – If set to False, the forecasting_models are not retrained when calling fit() (only supported if all the forecasting_models are pretrained GlobalForecastingModels). Default:True
.train_using_historical_forecasts (
bool
) – If set to True, use historical_forecasts() to generate the forecasting models’ predictions used to train the regression model in fit(). Available when forecasting_models contains only GlobalForecastingModels. Recommended when regression_train_n_points is greater than output_chunk_length of the underlying forecasting_models. Default:False
.show_warnings (
bool
) – Whether to show warnings related to forecasting_models covariates support.
References
- 1
Wolpert, “Stacked generalization”, Neural Networks, vol. 5, no. 2, pp. 241–259, Jan. 1992
Examples
>>> from darts.datasets import AirPassengersDataset >>> from darts.models import RegressionEnsembleModel, NaiveSeasonal, LinearRegressionModel >>> series = AirPassengersDataset().load() >>> model = RegressionEnsembleModel( >>> forecasting_models = [ >>> NaiveSeasonal(K=12), >>> LinearRegressionModel(lags=4) >>> ], >>> regression_train_n_points=20 >>> ) >>> model.fit(series) >>> pred = model.predict(6) >>> pred.values() array([[494.24050364], [464.3869697 ], [496.53180506], [544.82269341], [557.35256055], [630.24334385]])
Attributes
Whether the model considers static covariates, if there are any.
A 8-tuple containing in order: (min target lag, max target lag, min past covariate lag, max past covariate lag, min future covariate lag, max future covariate lag, output shift, max target lag train (only for RNNModel)).
The minimum number of samples for training the model.
Return the output_chunk_length of the regression model (ensembling layer)
Number of time steps that the output/prediction starts after the end of the input.
Whether model supports future covariates
RegressionEnsembleModel supports likelihood parameters predictions if its regression model does
Whether the model considers more than one variate in the time series.
Whether the model supports optimized historical forecasts
Whether model supports past covariates
A RegressionEnsembleModel is probabilistic if its regression model is probabilistic (ensembling layer)
Whether model supports sample weight for training.
Whether model supports static covariates
Whether the model supports prediction for any input series.
Whether the model uses future covariates, once fitted.
Whether the model uses past covariates, once fitted.
Whether the model uses static covariates, once fitted.
model_params
Methods
backtest
(series[, past_covariates, ...])Compute error values that the model produced for historical forecasts on (potentially multiple) series.
ensemble
(predictions, series[, num_samples, ...])Defines how to ensemble the individual models' predictions to produce a single prediction.
fit
(series[, past_covariates, ...])Fits the forecasting models with the entire series except the last regression_train_n_points values, which are used to train the regression model.
generate_fit_encodings
(series[, ...])Generates the covariate encodings that were used/generated for fitting the model and returns a tuple of past, and future covariates series with the original and encoded covariates stacked together.
generate_fit_predict_encodings
(n, series[, ...])Generates covariate encodings for training and inference/prediction and returns a tuple of past, and future covariates series with the original and encoded covariates stacked together.
generate_predict_encodings
(n, series[, ...])Generates covariate encodings for the inference/prediction set and returns a tuple of past, and future covariates series with the original and encoded covariates stacked together.
gridsearch
(parameters, series[, ...])Find the best hyper-parameters among a given set using a grid search.
historical_forecasts
(series[, ...])Generates historical forecasts by simulating predictions at various points in time throughout the history of the provided (potentially multiple) series.
load
(path)Loads the model from a given path or file handle.
predict
(n[, series, past_covariates, ...])Forecasts values for n time steps after the end of the series.
residuals
(series[, past_covariates, ...])Compute the residuals that the model produced for historical forecasts on (potentially multiple) series.
save
([path])Saves the ensemble model under a given path or file handle.
- backtest(series, past_covariates=None, future_covariates=None, historical_forecasts=None, forecast_horizon=1, num_samples=1, train_length=None, start=None, start_format='value', stride=1, retrain=True, overlap_end=False, last_points_only=False, metric=<function mape>, reduction=<function mean>, verbose=False, show_warnings=True, predict_likelihood_parameters=False, enable_optimization=True, data_transformers=None, metric_kwargs=None, fit_kwargs=None, predict_kwargs=None, sample_weight=None)¶
Compute error values that the model produced for historical forecasts on (potentially multiple) series.
If historical_forecasts are provided, the metric(s) (given by the metric function) is evaluated directly on all forecasts and actual values. The same series and last_points_only value must be passed that were used to generate the historical forecasts. Finally, the method returns an optional reduction (the mean by default) of all these metric scores.
If historical_forecasts is
None
, it first generates the historical forecasts with the parameters given below (seeForecastingModel.historical_forecasts()
for more info) and then evaluates as described above.The metric(s) can be further customized metric_kwargs (e.g. control the aggregation over components, time steps, multiple series, other required arguments such as q for quantile metrics, …).
- Parameters
series (
Union
[TimeSeries
,Sequence
[TimeSeries
]]) – A (sequence of) target time series used to successively train (if retrain is notFalse
) and compute the historical forecasts.past_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, a (sequence of) past-observed covariate time series for every input time series in series. This applies only if the model supports past covariates.future_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, a (sequence of) future-known covariate time series for every input time series in series. This applies only if the model supports future covariates.historical_forecasts (
Union
[TimeSeries
,Sequence
[TimeSeries
],Sequence
[Sequence
[TimeSeries
]],None
]) – Optionally, the (or a sequence of / a sequence of sequences of) historical forecasts time series to be evaluated. Corresponds to the output ofhistorical_forecasts()
. The same series and last_points_only values must be passed that were used to generate the historical forecasts. If provided, will skip historical forecasting and ignore all parameters except series, last_points_only, metric, and reduction.forecast_horizon (
int
) – The forecast horizon for the predictions.num_samples (
int
) – Number of times a prediction is sampled from a probabilistic model. Use values>1
only for probabilistic models.train_length (
Optional
[int
,None
]) – Optionally, use a fixed length / number of time steps for every constructed training set (rolling window mode). Only effective when retrain is notFalse
. The default isNone
, where it uses all time steps up until the prediction time (expanding window mode). If larger than the number of available time steps, uses the expanding mode. Needs to be at least min_train_series_length.start (
Union
[Timestamp
,float
,int
,None
]) –Optionally, the first point in time at which a prediction is computed. This parameter supports:
float
,int
,pandas.Timestamp
, andNone
. If afloat
, it is the proportion of the time series that should lie before the first prediction point. If anint
, it is either the index position of the first prediction point for series with a pd.DatetimeIndex, or the index value for series with a pd.RangeIndex. The latter can be changed to the index position with start_format=”position”. If apandas.Timestamp
, it is the time stamp of the first prediction point. IfNone
, the first prediction point will automatically be set to:the first predictable point if retrain is
False
, or retrain is a Callable and the first predictable point is earlier than the first trainable point.the first trainable point if retrain is
True
orint
(given train_length), or retrain is aCallable
and the first trainable point is earlier than the first predictable point.the first trainable point (given train_length) otherwise
- Note: If start is not within the trainable / forecastable points, uses the closest valid start point that
is a round multiple of stride ahead of start. Raises a ValueError, if no valid start point exists.
- Note: If the model uses a shifted output (output_chunk_shift > 0), then the first predicted point is also
shifted by output_chunk_shift points into the future.
- Note: If start is outside the possible historical forecasting times, will ignore the parameter
(default behavior with
None
) and start at the first trainable/predictable point.
start_format (
Literal
[‘position’, ‘value’]) – Defines the start format. If set to'position'
, start corresponds to the index position of the first predicted point and can range from (-len(series), len(series) - 1). If set to'value'
, start corresponds to the index value/label of the first predicted point. Will raise an error if the value is not in series’ index. Default:'value'
.stride (
int
) – The number of time steps between two consecutive predictions.retrain (
Union
[bool
,int
,Callable
[…,bool
]]) –Whether and/or on which condition to retrain the model before predicting. This parameter supports 3 different types:
bool
, (positive)int
, andCallable
(returning abool
). In the case ofbool
: retrain the model at each step (True), or never retrain the model (False). In the case ofint
: the model is retrained every retrain iterations. In the case ofCallable
: the model is retrained whenever callable returns True. The callable must have the following positional arguments:counter (int): current retrain iteration
pred_time (pd.Timestamp or int): timestamp of forecast time (end of the training series)
train_series (TimeSeries): train series up to pred_time
past_covariates (TimeSeries): past_covariates series up to pred_time
future_covariates (TimeSeries): future_covariates series up to min(pred_time + series.freq * forecast_horizon, series.end_time())
Note: if any optional *_covariates are not passed to historical_forecast,
None
will be passed to the corresponding retrain function argument. Note: some models require being retrained every time and do not support anything other than retrain=True. Note: also controls the retraining of the data_transformers.overlap_end (
bool
) – Whether the returned forecasts can go beyond the series’ end or not.last_points_only (
bool
) – Whether to return only the last point of each historical forecast. If set toTrue
, the method returns a singleTimeSeries
(for each time series in series) containing the successive point forecasts. Otherwise, returns a list of historicalTimeSeries
forecasts.metric (
Union
[Callable
[…,Union
[float
,list
[float
],ndarray
,list
[ndarray
]]],list
[Callable
[…,Union
[float
,list
[float
],ndarray
,list
[ndarray
]]]]]) – A metric function or a list of metric functions. Each metric must either be a Darts metric (see here), or a custom metric that has an identical signature as Darts’ metrics, uses decoratorsmulti_ts_support()
andmulti_ts_support()
, and returns the metric score.reduction (
Optional
[Callable
[…,float
],None
]) – A function used to combine the individual error scores obtained when last_points_only is set to False. When providing several metric functions, the function will receive the argument axis = 1 to obtain single value for each metric function. If explicitly set to None, the method will return a list of the individual error scores instead. Set tonp.mean
by default.verbose (
bool
) – Whether to print the progress.show_warnings (
bool
) – Whether to show warnings related to historical forecasts optimization, or parameters start and train_length.predict_likelihood_parameters (
bool
) – If set to True, the model predicts the parameters of its likelihood instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. Default:False
.enable_optimization (
bool
) – Whether to use the optimized version of historical_forecasts when supported and available. Default:True
.data_transformers (
Optional
[dict
[str
,Union
[BaseDataTransformer
,Pipeline
]],None
]) –Optionally, a dictionary of BaseDataTransformer or Pipeline to apply to the corresponding series (possibles keys; “series”, “past_covariates”, “future_covariates”). If provided, all input series must be in the un-transformed space. For fittable transformer / pipeline:
if retrain=True, the data transformer re-fit on the training data at each historical forecast step.
if retrain=False, the data transformer transforms the series once before all the forecasts.
The fitted transformer is used to transform the input during both training and prediction. If the transformation is invertible, the forecasts will be inverse-transformed. Only effective when historical_forecasts=None.
metric_kwargs (
Union
[dict
[str
,Any
],list
[dict
[str
,Any
]],None
]) – Additional arguments passed to metric(), such as ‘n_jobs’ for parallelization, ‘component_reduction’ for reducing the component wise metrics, seasonality ‘m’ for scaled metrics, etc. Will pass arguments to each metric separately and only if they are present in the corresponding metric signature. Parameter ‘insample’ for scaled metrics (e.g. mase`, rmsse, …) is ignored, as it is handled internally.fit_kwargs (
Optional
[dict
[str
,Any
],None
]) – Optionally, some additional arguments passed to the model fit() method.predict_kwargs (
Optional
[dict
[str
,Any
],None
]) – Optionally, some additional arguments passed to the model predict() method.sample_weight (
Union
[TimeSeries
,Sequence
[TimeSeries
],str
,None
]) – Optionally, some sample weights to apply to the target series labels for training. Only effective when retrain is notFalse
. They are applied per observation, per label (each step in output_chunk_length), and per component. If a series or sequence of series, then those weights are used. If the weight series only have a single component / column, then the weights are applied globally to all components in series. Otherwise, for component-specific weights, the number of components must match those of series. If a string, then the weights are generated using built-in weighting functions. The available options are “linear” or “exponential” decay - the further in the past, the lower the weight. The weights are computed per time series.
- Return type
Union
[float
,ndarray
,list
[float
],list
[ndarray
]]- Returns
float – A single backtest score for single uni/multivariate series, a single metric function and:
historical_forecasts generated with last_points_only=True
historical_forecasts generated with last_points_only=False and using a backtest reduction
np.ndarray – An numpy array of backtest scores. For single series and one of:
a single metric function, historical_forecasts generated with last_points_only=False and backtest reduction=None. The output has shape (n forecasts, *).
multiple metric functions and historical_forecasts generated with last_points_only=False. The output has shape (*, n metrics) when using a backtest reduction, and (n forecasts, *, n metrics) when reduction=None
multiple uni/multivariate series including series_reduction and at least one of component_reduction=None or time_reduction=None for “per time step metrics”
List[float] – Same as for type float but for a sequence of series. The returned metric list has length len(series) with the float metric for each input series.
List[np.ndarray] – Same as for type np.ndarray but for a sequence of series. The returned metric list has length len(series) with the np.ndarray metrics for each input series.
- property considers_static_covariates: bool¶
Whether the model considers static covariates, if there are any.
- Return type
bool
- ensemble(predictions, series, num_samples=1, predict_likelihood_parameters=False)[source]¶
Defines how to ensemble the individual models’ predictions to produce a single prediction.
- Parameters
predictions (
Union
[TimeSeries
,Sequence
[TimeSeries
]]) – Individual predictions to ensembleseries (
Union
[TimeSeries
,Sequence
[TimeSeries
]]) – Sequence of timeseries to predict on. Optional, since it only makes sense for sequences of timeseries - local models retain timeseries for prediction.
- Returns
The predicted
TimeSeries
or sequence ofTimeSeries
obtained by ensembling the individual predictions- Return type
TimeSeries or Sequence[TimeSeries]
- property extreme_lags: tuple[Optional[int], Optional[int], Optional[int], Optional[int], Optional[int], Optional[int], int, Optional[int]]¶
A 8-tuple containing in order: (min target lag, max target lag, min past covariate lag, max past covariate lag, min future covariate lag, max future covariate lag, output shift, max target lag train (only for RNNModel)). If 0 is the index of the first prediction, then all lags are relative to this index.
See examples below.
- If the model wasn’t fitted with:
target (concerning RegressionModels only): then the first element should be None.
past covariates: then the third and fourth elements should be None.
future covariates: then the fifth and sixth elements should be None.
Should be overridden by models that use past or future covariates, and/or for model that have minimum target lag and maximum target lags potentially different from -1 and 0.
Notes
maximum target lag (second value) cannot be None and is always larger than or equal to 0.
Examples
>>> model = LinearRegressionModel(lags=3, output_chunk_length=2) >>> model.fit(train_series) >>> model.extreme_lags (-3, 1, None, None, None, None, 0, None) >>> model = LinearRegressionModel(lags=3, output_chunk_length=2, output_chunk_shift=2) >>> model.fit(train_series) >>> model.extreme_lags (-3, 1, None, None, None, None, 2, None) >>> model = LinearRegressionModel(lags=[-3, -5], lags_past_covariates = 4, output_chunk_length=7) >>> model.fit(train_series, past_covariates=past_covariates) >>> model.extreme_lags (-5, 6, -4, -1, None, None, 0, None) >>> model = LinearRegressionModel(lags=[3, 5], lags_future_covariates = [4, 6], output_chunk_length=7) >>> model.fit(train_series, future_covariates=future_covariates) >>> model.extreme_lags (-5, 6, None, None, 4, 6, 0, None) >>> model = NBEATSModel(input_chunk_length=10, output_chunk_length=7) >>> model.fit(train_series) >>> model.extreme_lags (-10, 6, None, None, None, None, 0, None) >>> model = NBEATSModel(input_chunk_length=10, output_chunk_length=7, lags_future_covariates=[4, 6]) >>> model.fit(train_series, future_covariates) >>> model.extreme_lags (-10, 6, None, None, 4, 6, 0, None)
- Return type
tuple
[Optional
[int
,None
],Optional
[int
,None
],Optional
[int
,None
],Optional
[int
,None
],Optional
[int
,None
],Optional
[int
,None
],int
,Optional
[int
,None
]]
- fit(series, past_covariates=None, future_covariates=None, sample_weight=None)[source]¶
Fits the forecasting models with the entire series except the last regression_train_n_points values, which are used to train the regression model.
If forecasting_models contains fitted GlobalForecastingModels and train_forecasting_model=False, only the regression model will be trained.
- Parameters
series (
Union
[TimeSeries
,Sequence
[TimeSeries
]]) – TimeSeries or Sequence[TimeSeries] object containing the target values.past_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, a series or sequence of series specifying past-observed covariates passed to the forecasting modelsfuture_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, a series or sequence of series specifying future-known covariates passed to the forecasting modelssample_weight (
Union
[TimeSeries
,Sequence
[TimeSeries
],str
,None
]) – Optionally, some sample weights to apply to the target series labels. They are applied per observation, per label (each step in output_chunk_length), and per component. If a series or sequence of series, then those weights are used. If the weight series only have a single component / column, then the weights are applied globally to all components in series. Otherwise, for component-specific weights, the number of components must match those of series. If a string, then the weights are generated using built-in weighting functions. The available options are “linear” or “exponential” decay - the further in the past, the lower the weight. The weights are computed globally based on the length of the longest series in series. Then for each series, the weights are extracted from the end of the global weights. This gives a common time weighting across all series.
- generate_fit_encodings(series, past_covariates=None, future_covariates=None)¶
Generates the covariate encodings that were used/generated for fitting the model and returns a tuple of past, and future covariates series with the original and encoded covariates stacked together. The encodings are generated by the encoders defined at model creation with parameter add_encoders. Pass the same series, past_covariates, and future_covariates that you used to train/fit the model.
- Parameters
series (
Union
[TimeSeries
,Sequence
[TimeSeries
]]) – The series or sequence of series with the target values used when fitting the model.past_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, the series or sequence of series with the past-observed covariates used when fitting the model.future_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, the series or sequence of series with the future-known covariates used when fitting the model.
- Returns
A tuple of (past covariates, future covariates). Each covariate contains the original as well as the encoded covariates.
- Return type
Tuple[Union[TimeSeries, Sequence[TimeSeries]], Union[TimeSeries, Sequence[TimeSeries]]]
- generate_fit_predict_encodings(n, series, past_covariates=None, future_covariates=None)¶
Generates covariate encodings for training and inference/prediction and returns a tuple of past, and future covariates series with the original and encoded covariates stacked together. The encodings are generated by the encoders defined at model creation with parameter add_encoders. Pass the same series, past_covariates, and future_covariates that you intend to use for training and prediction.
- Parameters
n (
int
) – The number of prediction time steps after the end of series intended to be used for prediction.series (
Union
[TimeSeries
,Sequence
[TimeSeries
]]) – The series or sequence of series with target values intended to be used for training and prediction.past_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, the past-observed covariates series intended to be used for training and prediction. The dimensions must match those of the covariates used for training.future_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, the future-known covariates series intended to be used for prediction. The dimensions must match those of the covariates used for training.
- Returns
A tuple of (past covariates, future covariates). Each covariate contains the original as well as the encoded covariates.
- Return type
Tuple[Union[TimeSeries, Sequence[TimeSeries]], Union[TimeSeries, Sequence[TimeSeries]]]
- generate_predict_encodings(n, series, past_covariates=None, future_covariates=None)¶
Generates covariate encodings for the inference/prediction set and returns a tuple of past, and future covariates series with the original and encoded covariates stacked together. The encodings are generated by the encoders defined at model creation with parameter add_encoders. Pass the same series, past_covariates, and future_covariates that you intend to use for prediction.
- Parameters
n (
int
) – The number of prediction time steps after the end of series intended to be used for prediction.series (
Union
[TimeSeries
,Sequence
[TimeSeries
]]) – The series or sequence of series with target values intended to be used for prediction.past_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, the past-observed covariates series intended to be used for prediction. The dimensions must match those of the covariates used for training.future_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, the future-known covariates series intended to be used for prediction. The dimensions must match those of the covariates used for training.
- Returns
A tuple of (past covariates, future covariates). Each covariate contains the original as well as the encoded covariates.
- Return type
Tuple[Union[TimeSeries, Sequence[TimeSeries]], Union[TimeSeries, Sequence[TimeSeries]]]
- classmethod gridsearch(parameters, series, past_covariates=None, future_covariates=None, forecast_horizon=None, stride=1, start=None, start_format='value', last_points_only=False, show_warnings=True, val_series=None, use_fitted_values=False, metric=<function mape>, reduction=<function mean>, verbose=False, n_jobs=1, n_random_samples=None, data_transformers=None, fit_kwargs=None, predict_kwargs=None, sample_weight=None)¶
Find the best hyper-parameters among a given set using a grid search.
This function has 3 modes of operation: Expanding window mode, split mode and fitted value mode. The three modes of operation evaluate every possible combination of hyper-parameter values provided in the parameters dictionary by instantiating the model_class subclass of ForecastingModel with each combination, and returning the best-performing model with regard to the metric function. The metric function is expected to return an error value, thus the model resulting in the smallest metric output will be chosen.
The relationship of the training data and test data depends on the mode of operation.
Expanding window mode (activated when forecast_horizon is passed): For every hyperparameter combination, the model is repeatedly trained and evaluated on different splits of series. This process is accomplished by using the
backtest()
function as a subroutine to produce historic forecasts starting from start that are compared against the ground truth values of series. Note that the model is retrained for every single prediction, thus this mode is slower.Split window mode (activated when val_series is passed): This mode will be used when the val_series argument is passed. For every hyper-parameter combination, the model is trained on series and evaluated on val_series.
Fitted value mode (activated when use_fitted_values is set to True): For every hyper-parameter combination, the model is trained on series and evaluated on the resulting fitted values. Not all models have fitted values, and this method raises an error if the model doesn’t have a fitted_values member. The fitted values are the result of the fit of the model on series. Comparing with the fitted values can be a quick way to assess the model, but one cannot see if the model is overfitting the series.
Derived classes must ensure that a single instance of a model will not share parameters with the other instances, e.g., saving models in the same path. Otherwise, an unexpected behavior can arise while running several models in parallel (when
n_jobs != 1
). If this cannot be avoided, then gridsearch should be redefined, forcingn_jobs = 1
.Currently this method only supports deterministic predictions (i.e. when models’ predictions have only 1 sample).
- Parameters
model_class – The ForecastingModel subclass to be tuned for ‘series’.
parameters (
dict
) – A dictionary containing as keys hyperparameter names, and as values lists of values for the respective hyperparameter.series (
TimeSeries
) – The target series used as input and target for training.past_covariates (
Optional
[TimeSeries
,None
]) – Optionally, a past-observed covariate series. This applies only if the model supports past covariates.future_covariates (
Optional
[TimeSeries
,None
]) – Optionally, a future-known covariate series. This applies only if the model supports future covariates.forecast_horizon (
Optional
[int
,None
]) – The integer value of the forecasting horizon. Activates expanding window mode.stride (
int
) – Only used in expanding window mode. The number of time steps between two consecutive predictions.start (
Union
[Timestamp
,float
,int
,None
]) –Only used in expanding window mode. Optionally, the first point in time at which a prediction is computed. This parameter supports:
float
,int
,pandas.Timestamp
, andNone
. If afloat
, it is the proportion of the time series that should lie before the first prediction point. If anint
, it is either the index position of the first prediction point for series with a pd.DatetimeIndex, or the index value for series with a pd.RangeIndex. The latter can be changed to the index position with start_format=”position”. If apandas.Timestamp
, it is the time stamp of the first prediction point. IfNone
, the first prediction point will automatically be set to:the first predictable point if retrain is
False
, or retrain is a Callable and the first predictable point is earlier than the first trainable point.the first trainable point if retrain is
True
orint
(given train_length), or retrain is a Callable and the first trainable point is earlier than the first predictable point.the first trainable point (given train_length) otherwise
- Note: If start is not within the trainable / forecastable points, uses the closest valid start point that
is a round multiple of stride ahead of start. Raises a ValueError, if no valid start point exists.
- Note: If the model uses a shifted output (output_chunk_shift > 0), then the first predicted point is also
shifted by output_chunk_shift points into the future.
- Note: If start is outside the possible historical forecasting times, will ignore the parameter
(default behavior with
None
) and start at the first trainable/predictable point.
start_format (
Literal
[‘position’, ‘value’]) – Only used in expanding window mode. Defines the start format. Only effective when start is an integer and series is indexed with a pd.RangeIndex. If set to ‘position’, start corresponds to the index position of the first predicted point and can range from (-len(series), len(series) - 1). If set to ‘value’, start corresponds to the index value/label of the first predicted point. Will raise an error if the value is not in series’ index. Default:'value'
last_points_only (
bool
) – Only used in expanding window mode. Whether to use the whole forecasts or only the last point of each forecast to compute the error.show_warnings (
bool
) – Only used in expanding window mode. Whether to show warnings related to the start parameter.val_series (
Optional
[TimeSeries
,None
]) – The TimeSeries instance used for validation in split mode. If provided, this series must start right after the end of series; so that a proper comparison of the forecast can be made.use_fitted_values (
bool
) – If True, uses the comparison with the fitted values. Raises an error iffitted_values
is not an attribute of model_class.metric (
Callable
[[TimeSeries
,TimeSeries
],float
]) –A metric function that returns the error between two TimeSeries as a float value . Must either be one of Darts’ “aggregated over time” metrics (see here), or a custom metric that as input two TimeSeries and returns the error
reduction (
Callable
[[ndarray
],float
]) – A reduction function (mapping array to float) describing how to aggregate the errors obtained on the different validation series when backtesting. By default it’ll compute the mean of errors.verbose – Whether to print the progress.
n_jobs (
int
) – The number of jobs to run in parallel. Parallel jobs are created only when there are two or more parameters combinations to evaluate. Each job will instantiate, train, and evaluate a different instance of the model. Defaults to 1 (sequential). Setting the parameter to -1 means using all the available cores.n_random_samples (
Union
[int
,float
,None
]) – The number/ratio of hyperparameter combinations to select from the full parameter grid. This will perform a random search instead of using the full grid. If an integer, n_random_samples is the number of parameter combinations selected from the full grid and must be between 0 and the total number of parameter combinations. If a float, n_random_samples is the ratio of parameter combinations selected from the full grid and must be between 0 and 1. Defaults to None, for which random selection will be ignored.data_transformers (
Optional
[dict
[str
,Union
[BaseDataTransformer
,Pipeline
]],None
]) –Optionally, a dictionary of BaseDataTransformer or Pipeline to apply to the corresponding series (possibles keys; “series”, “past_covariates”, “future_covariates”). If provided, all input series must be in the un-transformed space. For fittable transformer / pipeline:
if retrain=True, the data transformer re-fit on the training data at each historical forecast step.
if retrain=False, the data transformer transforms the series once before all the forecasts.
The fitted transformer is used to transform the input during both training and prediction. If the transformation is invertible, the forecasts will be inverse-transformed.
fit_kwargs (
Optional
[dict
[str
,Any
],None
]) – Additional arguments passed to the model fit() method.predict_kwargs (
Optional
[dict
[str
,Any
],None
]) – Additional arguments passed to the model predict() method.sample_weight (
Union
[TimeSeries
,str
,None
]) – Optionally, some sample weights to apply to the target series labels for training. Only effective when retrain is notFalse
. They are applied per observation, per label (each step in output_chunk_length), and per component. If a series, then those weights are used. If the weight series only have a single component / column, then the weights are applied globally to all components in series. Otherwise, for component-specific weights, the number of components must match those of series. If a string, then the weights are generated using built-in weighting functions. The available options are “linear” or “exponential” decay - the further in the past, the lower the weight.
- Returns
A tuple containing an untrained model_class instance created from the best-performing hyper-parameters, along with a dictionary containing these best hyper-parameters, and metric score for the best hyper-parameters.
- Return type
ForecastingModel, Dict, float
- historical_forecasts(series, past_covariates=None, future_covariates=None, forecast_horizon=1, num_samples=1, train_length=None, start=None, start_format='value', stride=1, retrain=True, overlap_end=False, last_points_only=True, verbose=False, show_warnings=True, predict_likelihood_parameters=False, enable_optimization=True, data_transformers=None, fit_kwargs=None, predict_kwargs=None, sample_weight=None)¶
Generates historical forecasts by simulating predictions at various points in time throughout the history of the provided (potentially multiple) series. This process involves retrospectively applying the model to different time steps, as if the forecasts were made in real-time at those specific moments. This allows for an evaluation of the model’s performance over the entire duration of the series, providing insights into its predictive accuracy and robustness across different historical periods.
There are two main modes for this method:
Re-training Mode (Default, retrain=True): The model is re-trained at each step of the simulation, and generates a forecast using the updated model. In case of multiple series, the model is re-trained on each series independently (global training is not yet supported).
Pre-trained Mode (retrain=False): The forecasts are generated at each step of the simulation without re-training. It is only supported for pre-trained global forecasting models. This mode is significantly faster as it skips the re-training step.
By choosing the appropriate mode, you can balance between computational efficiency and the need for up-to-date model training.
Re-training Mode: This mode repeatedly builds a training set by either expanding from the beginning of the series or by using a fixed-length train_length (the start point can also be configured with start and start_format). The model is then trained on this training set, and a forecast of length forecast_horizon is generated. Subsequently, the end of the training set is moved forward by stride time steps, and the process is repeated.
Pre-trained Mode: This mode is only supported for pre-trained global forecasting models. It uses the same simulation steps as in the Re-training Mode (ignoring train_length), but generates the forecasts directly without re-training.
By default, with last_points_only=True, this method returns a single time series (or a sequence of time series) composed of the last point from each historical forecast. This time series will thus have a frequency of series.freq * stride. If last_points_only=False, it will instead return a list (or a sequence of lists) of the full historical forecast series each with frequency series.freq.
- Parameters
series (
Union
[TimeSeries
,Sequence
[TimeSeries
]]) – A (sequence of) target time series used to successively train (if retrain is notFalse
) and compute the historical forecasts.past_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, a (sequence of) past-observed covariate time series for every input time series in series. This applies only if the model supports past covariates.future_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, a (sequence of) future-known covariate time series for every input time series in series. This applies only if the model supports future covariates.forecast_horizon (
int
) – The forecast horizon for the predictions.num_samples (
int
) – Number of times a prediction is sampled from a probabilistic model. Use values>1
only for probabilistic models.train_length (
Optional
[int
,None
]) – Optionally, use a fixed length / number of time steps for every constructed training set (rolling window mode). Only effective when retrain is notFalse
. The default isNone
, where it uses all time steps up until the prediction time (expanding window mode). If larger than the number of available time steps, uses the expanding mode. Needs to be at least min_train_series_length.start (
Union
[Timestamp
,float
,int
,None
]) –Optionally, the first point in time at which a prediction is computed. This parameter supports:
float
,int
,pandas.Timestamp
, andNone
. If afloat
, it is the proportion of the time series that should lie before the first prediction point. If anint
, it is either the index position of the first prediction point for series with a pd.DatetimeIndex, or the index value for series with a pd.RangeIndex. The latter can be changed to the index position with start_format=”position”. If apandas.Timestamp
, it is the time stamp of the first prediction point. IfNone
, the first prediction point will automatically be set to:the first predictable point if retrain is
False
, or retrain is a Callable and the first predictable point is earlier than the first trainable point.the first trainable point if retrain is
True
orint
(given train_length), or retrain is aCallable
and the first trainable point is earlier than the first predictable point.the first trainable point (given train_length) otherwise
- Note: If start is not within the trainable / forecastable points, uses the closest valid start point that
is a round multiple of stride ahead of start. Raises a ValueError, if no valid start point exists.
- Note: If the model uses a shifted output (output_chunk_shift > 0), then the first predicted point is also
shifted by output_chunk_shift points into the future.
- Note: If start is outside the possible historical forecasting times, will ignore the parameter
(default behavior with
None
) and start at the first trainable/predictable point.
start_format (
Literal
[‘position’, ‘value’]) – Defines the start format. If set to'position'
, start corresponds to the index position of the first predicted point and can range from (-len(series), len(series) - 1). If set to'value'
, start corresponds to the index value/label of the first predicted point. Will raise an error if the value is not in series’ index. Default:'value'
.stride (
int
) – The number of time steps between two consecutive predictions.retrain (
Union
[bool
,int
,Callable
[…,bool
]]) –Whether and/or on which condition to retrain the model before predicting. This parameter supports 3 different types:
bool
, (positive)int
, andCallable
(returning abool
). In the case ofbool
: retrain the model at each step (True), or never retrain the model (False). In the case ofint
: the model is retrained every retrain iterations. In the case ofCallable
: the model is retrained whenever callable returns True. The callable must have the following positional arguments:counter (int): current retrain iteration
pred_time (pd.Timestamp or int): timestamp of forecast time (end of the training series)
train_series (TimeSeries): train series up to pred_time
past_covariates (TimeSeries): past_covariates series up to pred_time
future_covariates (TimeSeries): future_covariates series up to min(pred_time + series.freq * forecast_horizon, series.end_time())
Note: if any optional *_covariates are not passed to historical_forecast,
None
will be passed to the corresponding retrain function argument. Note: some models require being retrained every time and do not support anything other than retrain=True. Note: also controls the retraining of the data_transformers.overlap_end (
bool
) – Whether the returned forecasts can go beyond the series’ end or not.last_points_only (
bool
) – Whether to return only the last point of each historical forecast. If set toTrue
, the method returns a singleTimeSeries
(for each time series in series) containing the successive point forecasts. Otherwise, returns a list of historicalTimeSeries
forecasts.verbose (
bool
) – Whether to print the progress.show_warnings (
bool
) – Whether to show warnings related to historical forecasts optimization, or parameters start and train_length.predict_likelihood_parameters (
bool
) – If set to True, the model predicts the parameters of its likelihood instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. Default:False
.enable_optimization (
bool
) – Whether to use the optimized version of historical_forecasts when supported and available. Default:True
.data_transformers (
Optional
[dict
[str
,Union
[BaseDataTransformer
,Pipeline
]],None
]) –Optionally, a dictionary of BaseDataTransformer or Pipeline to apply to the corresponding series (possibles keys; “series”, “past_covariates”, “future_covariates”). If provided, all input series must be in the un-transformed space. For fittable transformer / pipeline:
if retrain=True, the data transformer re-fit on the training data at each historical forecast step.
if retrain=False, the data transformer transforms the series once before all the forecasts.
The fitted transformer is used to transform the input during both training and prediction. If the transformation is invertible, the forecasts will be inverse-transformed.
fit_kwargs (
Optional
[dict
[str
,Any
],None
]) – Optionally, some additional arguments passed to the model fit() method.predict_kwargs (
Optional
[dict
[str
,Any
],None
]) – Optionally, some additional arguments passed to the model predict() method.sample_weight (
Union
[TimeSeries
,Sequence
[TimeSeries
],str
,None
]) – Optionally, some sample weights to apply to the target series labels for training. Only effective when retrain is notFalse
. They are applied per observation, per label (each step in output_chunk_length), and per component. If a series or sequence of series, then those weights are used. If the weight series only have a single component / column, then the weights are applied globally to all components in series. Otherwise, for component-specific weights, the number of components must match those of series. If a string, then the weights are generated using built-in weighting functions. The available options are “linear” or “exponential” decay - the further in the past, the lower the weight. The weights are computed per time series.
- Return type
Union
[TimeSeries
,list
[TimeSeries
],list
[list
[TimeSeries
]]]- Returns
TimeSeries – A single historical forecast for a single series and last_points_only=True: it contains only the predictions at step forecast_horizon from all historical forecasts.
List[TimeSeries] – A list of historical forecasts for:
a sequence (list) of series and last_points_only=True: for each series, it contains only the predictions at step forecast_horizon from all historical forecasts.
a single series and last_points_only=False: for each historical forecast, it contains the entire horizon forecast_horizon.
List[List[TimeSeries]] – A list of lists of historical forecasts for a sequence of series and last_points_only=False. For each series, and historical forecast, it contains the entire horizon forecast_horizon. The outer list is over the series provided in the input sequence, and the inner lists contain the historical forecasts for each series.
- static load(path)¶
Loads the model from a given path or file handle.
- Parameters
path (
Union
[str
,PathLike
,BinaryIO
]) – Path or file handle from which to load the model.- Return type
- property min_train_samples: int¶
The minimum number of samples for training the model.
- Return type
int
- property model_params: dict¶
- Return type
dict
- property output_chunk_length: int¶
Return the output_chunk_length of the regression model (ensembling layer)
- Return type
int
- property output_chunk_shift: int¶
Number of time steps that the output/prediction starts after the end of the input.
- Return type
int
- predict(n, series=None, past_covariates=None, future_covariates=None, num_samples=1, verbose=False, predict_likelihood_parameters=False, show_warnings=True)¶
Forecasts values for n time steps after the end of the series.
If
fit()
has been called with only oneTimeSeries
as argument, then the series argument of this function is optional, and it will simply produce the next horizon time steps forecast. The past_covariates and future_covariates arguments also don’t have to be provided again in this case.If
fit()
has been called with series specified as aSequence[TimeSeries]
(i.e., the model has been trained on multiple time series), the series argument must be specified.When the series argument is specified, this function will compute the next n time steps forecasts for the simple series (or for each series in the sequence) given by series.
If multiple past or future covariates were specified during the training, some corresponding covariates must also be specified here. For every input in series a matching (past and/or future) covariate time series has to be provided.
- Parameters
n (
int
) – Forecast horizon - the number of time steps after the end of the series for which to produce predictions.series (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – The series whose future values will be predicted.past_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – One past-observed covariate time series for every input time series in series. They must match the past covariates that have been used with thefit()
function for training in terms of dimension.future_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – One future-known covariate time series for every input time series in series. They must match the past covariates that have been used with thefit()
function for training in terms of dimension.num_samples (
int
) – Number of times a prediction is sampled from a probabilistic model. Must be 1 for deterministic models.verbose (
bool
) – Whether to print the progress.predict_likelihood_parameters (
bool
) – If set to True, the model predicts the parameters of its likelihood instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. Default:False
show_warnings (
bool
) – Whether to show warnings related auto-regression and past covariates usage.
- Returns
If series is not specified, this function returns a single time series containing the n next points after then end of the training series. If series is given and is a simple
TimeSeries
, this function returns the n next points after the end of series. If series is given and is a sequence of several time series, this function returns a sequence where each element contains the corresponding n points forecasts.- Return type
Union[TimeSeries, Sequence[TimeSeries]]
- residuals(series, past_covariates=None, future_covariates=None, historical_forecasts=None, forecast_horizon=1, num_samples=1, train_length=None, start=None, start_format='value', stride=1, retrain=True, overlap_end=False, last_points_only=True, metric=<function err>, verbose=False, show_warnings=True, predict_likelihood_parameters=False, enable_optimization=True, data_transformers=None, metric_kwargs=None, fit_kwargs=None, predict_kwargs=None, sample_weight=None, values_only=False)¶
Compute the residuals that the model produced for historical forecasts on (potentially multiple) series.
This function computes the difference (or one of Darts’ “per time step” metrics) between the actual observations from series and the fitted values obtained by training the model on series (or using a pre-trained model with retrain=False). Not all models support fitted values, so we use historical forecasts as an approximation for them.
In sequence this method performs:
use pre-computed historical_forecasts or compute historical forecasts for each series (see
historical_forecasts()
for more details). How the historical forecasts are generated can be configured with parameters num_samples, train_length, start, start_format, forecast_horizon, stride, retrain, last_points_only, fit_kwargs, and predict_kwargs.compute a backtest using a “per time step” metric between the historical forecasts and series per component/column and time step (see
backtest()
for more details). By default, uses the residualserr()
(error) as a metric.create and return TimeSeries (or simply a np.ndarray with values_only=True) with the time index from historical forecasts, and values from the metrics per component and time step.
This method works for single or multiple univariate or multivariate series. It uses the median prediction (when dealing with stochastic forecasts).
- Parameters
series (
Union
[TimeSeries
,Sequence
[TimeSeries
]]) – A (sequence of) target time series used to successively train (if retrain is notFalse
) and compute the historical forecasts.past_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, a (sequence of) past-observed covariate time series for every input time series in series. This applies only if the model supports past covariates.future_covariates (
Union
[TimeSeries
,Sequence
[TimeSeries
],None
]) – Optionally, a (sequence of) future-known covariate time series for every input time series in series. This applies only if the model supports future covariates.historical_forecasts (
Union
[TimeSeries
,Sequence
[TimeSeries
],Sequence
[Sequence
[TimeSeries
]],None
]) – Optionally, the (or a sequence of / a sequence of sequences of) historical forecasts time series to be evaluated. Corresponds to the output ofhistorical_forecasts()
. The same series and last_points_only values must be passed that were used to generate the historical forecasts. If provided, will skip historical forecasting and ignore all parameters except series, last_points_only, metric, and reduction.forecast_horizon (
int
) – The forecast horizon for the predictions.num_samples (
int
) – Number of times a prediction is sampled from a probabilistic model. Use values>1
only for probabilistic models.train_length (
Optional
[int
,None
]) – Optionally, use a fixed length / number of time steps for every constructed training set (rolling window mode). Only effective when retrain is notFalse
. The default isNone
, where it uses all time steps up until the prediction time (expanding window mode). If larger than the number of available time steps, uses the expanding mode. Needs to be at least min_train_series_length.start (
Union
[Timestamp
,float
,int
,None
]) –Optionally, the first point in time at which a prediction is computed. This parameter supports:
float
,int
,pandas.Timestamp
, andNone
. If afloat
, it is the proportion of the time series that should lie before the first prediction point. If anint
, it is either the index position of the first prediction point for series with a pd.DatetimeIndex, or the index value for series with a pd.RangeIndex. The latter can be changed to the index position with start_format=”position”. If apandas.Timestamp
, it is the time stamp of the first prediction point. IfNone
, the first prediction point will automatically be set to:the first predictable point if retrain is
False
, or retrain is a Callable and the first predictable point is earlier than the first trainable point.the first trainable point if retrain is
True
orint
(given train_length), or retrain is aCallable
and the first trainable point is earlier than the first predictable point.the first trainable point (given train_length) otherwise
- Note: If start is not within the trainable / forecastable points, uses the closest valid start point that
is a round multiple of stride ahead of start. Raises a ValueError, if no valid start point exists.
- Note: If the model uses a shifted output (output_chunk_shift > 0), then the first predicted point is also
shifted by output_chunk_shift points into the future.
- Note: If start is outside the possible historical forecasting times, will ignore the parameter
(default behavior with
None
) and start at the first trainable/predictable point.
start_format (
Literal
[‘position’, ‘value’]) – Defines the start format. If set to'position'
, start corresponds to the index position of the first predicted point and can range from (-len(series), len(series) - 1). If set to'value'
, start corresponds to the index value/label of the first predicted point. Will raise an error if the value is not in series’ index. Default:'value'
.stride (
int
) – The number of time steps between two consecutive predictions.retrain (
Union
[bool
,int
,Callable
[…,bool
]]) –Whether and/or on which condition to retrain the model before predicting. This parameter supports 3 different types:
bool
, (positive)int
, andCallable
(returning abool
). In the case ofbool
: retrain the model at each step (True), or never retrain the model (False). In the case ofint
: the model is retrained every retrain iterations. In the case ofCallable
: the model is retrained whenever callable returns True. The callable must have the following positional arguments:counter (int): current retrain iteration
pred_time (pd.Timestamp or int): timestamp of forecast time (end of the training series)
train_series (TimeSeries): train series up to pred_time
past_covariates (TimeSeries): past_covariates series up to pred_time
future_covariates (TimeSeries): future_covariates series up to min(pred_time + series.freq * forecast_horizon, series.end_time())
Note: if any optional *_covariates are not passed to historical_forecast,
None
will be passed to the corresponding retrain function argument. Note: some models require being retrained every time and do not support anything other than retrain=True. Note: also controls the retraining of the data_transformers.overlap_end (
bool
) – Whether the returned forecasts can go beyond the series’ end or not.last_points_only (
bool
) – Whether to return only the last point of each historical forecast. If set toTrue
, the method returns a singleTimeSeries
(for each time series in series) containing the successive point forecasts. Otherwise, returns a list of historicalTimeSeries
forecasts.metric (
Callable
[…,Union
[float
,list
[float
],ndarray
,list
[ndarray
]]]) –Either one of Darts’ “per time step” metrics (see here), or a custom metric that has an identical signature as Darts’ “per time step” metrics, uses decorators
multi_ts_support()
andmulti_ts_support()
, and returns one value per time step.verbose (
bool
) – Whether to print the progress.show_warnings (
bool
) – Whether to show warnings related to historical forecasts optimization, or parameters start and train_length.predict_likelihood_parameters (
bool
) – If set to True, the model predicts the parameters of its likelihood instead of the target. Only supported for probabilistic models with a likelihood, num_samples = 1 and n<=output_chunk_length. Default:False
.enable_optimization (
bool
) – Whether to use the optimized version of historical_forecasts when supported and available. Default:True
.data_transformers (
Optional
[dict
[str
,Union
[BaseDataTransformer
,Pipeline
]],None
]) –Optionally, a dictionary of BaseDataTransformer or Pipeline to apply to the corresponding series (possibles keys; “series”, “past_covariates”, “future_covariates”). If provided, all input series must be in the un-transformed space. For fittable transformer / pipeline:
if retrain=True, the data transformer re-fit on the training data at each historical forecast step.
if retrain=False, the data transformer transforms the series once before all the forecasts.
The fitted transformer is used to transform the input during both training and prediction. If the transformation is invertible, the forecasts will be inverse-transformed. Only effective when historical_forecasts=None.
metric_kwargs (
Optional
[dict
[str
,Any
],None
]) – Additional arguments passed to metric(), such as ‘n_jobs’ for parallelization, ‘m’ for scaled metrics, etc. Will pass arguments only if they are present in the corresponding metric signature. Ignores reduction arguments “series_reduction”, “component_reduction”, “time_reduction”, and parameter ‘insample’ for scaled metrics (e.g. mase`, rmsse, …), as they are handled internally.fit_kwargs (
Optional
[dict
[str
,Any
],None
]) – Optionally, some additional arguments passed to the model fit() method.predict_kwargs (
Optional
[dict
[str
,Any
],None
]) – Optionally, some additional arguments passed to the model predict() method.sample_weight (
Union
[TimeSeries
,Sequence
[TimeSeries
],str
,None
]) – Optionally, some sample weights to apply to the target series labels for training. Only effective when retrain is notFalse
. They are applied per observation, per label (each step in output_chunk_length), and per component. If a series or sequence of series, then those weights are used. If the weight series only have a single component / column, then the weights are applied globally to all components in series. Otherwise, for component-specific weights, the number of components must match those of series. If a string, then the weights are generated using built-in weighting functions. The available options are “linear” or “exponential” decay - the further in the past, the lower the weight. The weights are computed per time series.values_only (
bool
) – Whether to return the residuals as np.ndarray. If False, returns residuals as TimeSeries.
- Return type
Union
[TimeSeries
,list
[TimeSeries
],list
[list
[TimeSeries
]]]- Returns
TimeSeries – Residual TimeSeries for a single series and historical_forecasts generated with last_points_only=True.
List[TimeSeries] – A list of residual TimeSeries for a sequence (list) of series with last_points_only=True. The residual list has length len(series).
List[List[TimeSeries]] – A list of lists of residual TimeSeries for a sequence of series with last_points_only=False. The outer residual list has length len(series). The inner lists consist of the residuals from all possible series-specific historical forecasts.
- save(path=None, **pkl_kwargs)¶
Saves the ensemble model under a given path or file handle.
Additionally, two files are stored for each TorchForecastingModel under the forecasting models.
Example for saving and loading a
RegressionEnsembleModel
:from darts.models import RegressionEnsembleModel, LinearRegressionModel, TiDEModel model = RegressionEnsembleModel( forecasting_models = [ LinearRegressionModel(lags=4), TiDEModel(input_chunk_length=4, output_chunk_length=4), ], regression_train_n_points=10, ) model.save("my_ensemble_model.pkl") model_loaded = RegressionEnsembleModel.load("my_ensemble_model.pkl")
- Parameters
path (
Union
[str
,PathLike
,BinaryIO
,None
]) – Path or file handle under which to save the ensemble model at its current state. If no path is specified, the ensemble model is automatically saved under"{RegressionEnsembleModel}_{YYYY-mm-dd_HH_MM_SS}.pkl"
. If the i-th model of forecasting_models is a TorchForecastingModel, two files (model object and checkpoint) are saved under"{path}.{ithModelClass}_{i}.pt"
and"{path}.{ithModelClass}_{i}.ckpt"
.pkl_kwargs – Keyword arguments passed to pickle.dump()
- Return type
None
- property supports_future_covariates: bool¶
Whether model supports future covariates
- Return type
bool
- property supports_likelihood_parameter_prediction: bool¶
RegressionEnsembleModel supports likelihood parameters predictions if its regression model does
- Return type
bool
- property supports_multivariate: bool¶
Whether the model considers more than one variate in the time series.
- Return type
bool
- property supports_optimized_historical_forecasts: bool¶
Whether the model supports optimized historical forecasts
- Return type
bool
- property supports_past_covariates: bool¶
Whether model supports past covariates
- Return type
bool
- property supports_probabilistic_prediction: bool¶
A RegressionEnsembleModel is probabilistic if its regression model is probabilistic (ensembling layer)
- Return type
bool
- property supports_sample_weight: bool¶
Whether model supports sample weight for training.
- Return type
bool
- property supports_static_covariates: bool¶
Whether model supports static covariates
- Return type
bool
- property supports_transferrable_series_prediction: bool¶
Whether the model supports prediction for any input series.
- Return type
bool
- property uses_future_covariates: bool¶
Whether the model uses future covariates, once fitted.
- Return type
bool
- property uses_past_covariates: bool¶
Whether the model uses past covariates, once fitted.
- Return type
bool
- property uses_static_covariates: bool¶
Whether the model uses static covariates, once fitted.
- Return type
bool