Likelihoods for RegressionModel¶
- class darts.utils.likelihood_models.sklearn.GaussianLikelihood(n_outputs, random_state=None)[source]¶
Bases:
SKLearnLikelihood
Gaussian distribution [1].
- Parameters
n_outputs (
int
) – The number of predicted outputs per model call. 1 if multi_models=False, otherwise output_chunk_length.random_state (
Optional
[int
,None
]) – Optionally, control the randomness of the sampling.
References
Attributes
Returns the number of distribution parameters for a single target value.
Returns the likelihood parameter names.
Returns the likelihood type.
Methods
component_names
(input_series)Generates names for the parameters of the Likelihood.
predict
(model, x, num_samples, ...)Generates sampled or direct likelihood parameter predictions.
predict_likelihood_parameters
(model_output)Returns the distribution parameters as a array, extracted from the raw model outputs.
sample
(model_output)Samples a prediction from the likelihood distribution and the predicted parameters.
- component_names(input_series)¶
Generates names for the parameters of the Likelihood.
- Return type
list
[str
]
- property num_parameters: int¶
Returns the number of distribution parameters for a single target value.
- Return type
int
- property parameter_names: list[str]¶
Returns the likelihood parameter names.
- Return type
list
[str
]
- predict(model, x, num_samples, predict_likelihood_parameters, **kwargs)¶
Generates sampled or direct likelihood parameter predictions.
- Parameters
model – The Darts RegressionModel.
x (
ndarray
) – The input feature array passed to the underlying estimator’s predict() method.num_samples (
int
) – Number of times a prediction is sampled from the likelihood model / distribution. If 1 and predict_likelihood_parameters=False, returns median / mean predictions.predict_likelihood_parameters (
bool
) – If set to True, generates likelihood parameter predictions instead of sampling from the likelihood model / distribution. Only supported with num_samples = 1 and n<=output_chunk_length.kwargs – Some kwargs passed to the underlying estimator’s predict() method.
- Return type
ndarray
- predict_likelihood_parameters(model_output)[source]¶
Returns the distribution parameters as a array, extracted from the raw model outputs.
- Return type
ndarray
- sample(model_output)[source]¶
Samples a prediction from the likelihood distribution and the predicted parameters.
- Return type
ndarray
- property type: LikelihoodType¶
Returns the likelihood type.
- Return type
- class darts.utils.likelihood_models.sklearn.PoissonLikelihood(n_outputs, random_state=None)[source]¶
Bases:
SKLearnLikelihood
Poisson distribution [1].
- Parameters
n_outputs (
int
) – The number of predicted outputs per model call. 1 if multi_models=False, otherwise output_chunk_length.random_state (
Optional
[int
,None
]) – Optionally, control the randomness of the sampling.
References
Attributes
Returns the number of distribution parameters for a single target value.
Returns the likelihood parameter names.
Returns the likelihood type.
Methods
component_names
(input_series)Generates names for the parameters of the Likelihood.
predict
(model, x, num_samples, ...)Generates sampled or direct likelihood parameter predictions.
predict_likelihood_parameters
(model_output)Returns the distribution parameters as a array, extracted from the raw model outputs.
sample
(model_output)Samples a prediction from the likelihood distribution and the predicted parameters.
- component_names(input_series)¶
Generates names for the parameters of the Likelihood.
- Return type
list
[str
]
- property num_parameters: int¶
Returns the number of distribution parameters for a single target value.
- Return type
int
- property parameter_names: list[str]¶
Returns the likelihood parameter names.
- Return type
list
[str
]
- predict(model, x, num_samples, predict_likelihood_parameters, **kwargs)¶
Generates sampled or direct likelihood parameter predictions.
- Parameters
model – The Darts RegressionModel.
x (
ndarray
) – The input feature array passed to the underlying estimator’s predict() method.num_samples (
int
) – Number of times a prediction is sampled from the likelihood model / distribution. If 1 and predict_likelihood_parameters=False, returns median / mean predictions.predict_likelihood_parameters (
bool
) – If set to True, generates likelihood parameter predictions instead of sampling from the likelihood model / distribution. Only supported with num_samples = 1 and n<=output_chunk_length.kwargs – Some kwargs passed to the underlying estimator’s predict() method.
- Return type
ndarray
- predict_likelihood_parameters(model_output)[source]¶
Returns the distribution parameters as a array, extracted from the raw model outputs.
- Return type
ndarray
- sample(model_output)[source]¶
Samples a prediction from the likelihood distribution and the predicted parameters.
- Return type
ndarray
- property type: LikelihoodType¶
Returns the likelihood type.
- Return type
- class darts.utils.likelihood_models.sklearn.QuantileRegression(n_outputs, random_state=None, quantiles=None)[source]¶
Bases:
SKLearnLikelihood
Quantile Regression [1].
- Parameters
n_outputs (
int
) – The number of predicted outputs per model call. 1 if multi_models=False, otherwise output_chunk_length.random_state (
Optional
[int
,None
]) – Optionally, control the randomness of the sampling.quantiles (
Optional
[list
[float
],None
]) – A list of quantiles. Default: [0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99].
References
Attributes
Returns the number of distribution parameters for a single target value.
Returns the likelihood parameter names.
Returns the likelihood type.
Methods
component_names
(input_series)Generates names for the parameters of the Likelihood.
predict
(model, x, num_samples, ...)Generates sampled or direct likelihood parameter predictions.
predict_likelihood_parameters
(model_output)Returns the distribution parameters as a array, extracted from the raw model outputs.
sample
(model_output)Samples a prediction from the likelihood distribution and the predicted parameters.
- component_names(input_series)¶
Generates names for the parameters of the Likelihood.
- Return type
list
[str
]
- property num_parameters: int¶
Returns the number of distribution parameters for a single target value.
- Return type
int
- property parameter_names: list[str]¶
Returns the likelihood parameter names.
- Return type
list
[str
]
- predict(model, x, num_samples, predict_likelihood_parameters, **kwargs)¶
Generates sampled or direct likelihood parameter predictions.
- Parameters
model – The Darts RegressionModel.
x (
ndarray
) – The input feature array passed to the underlying estimator’s predict() method.num_samples (
int
) – Number of times a prediction is sampled from the likelihood model / distribution. If 1 and predict_likelihood_parameters=False, returns median / mean predictions.predict_likelihood_parameters (
bool
) – If set to True, generates likelihood parameter predictions instead of sampling from the likelihood model / distribution. Only supported with num_samples = 1 and n<=output_chunk_length.kwargs – Some kwargs passed to the underlying estimator’s predict() method.
- Return type
ndarray
- predict_likelihood_parameters(model_output)[source]¶
Returns the distribution parameters as a array, extracted from the raw model outputs.
- Return type
ndarray
- sample(model_output)[source]¶
Samples a prediction from the likelihood distribution and the predicted parameters.
- Return type
ndarray
- property type: LikelihoodType¶
Returns the likelihood type.
- Return type
- class darts.utils.likelihood_models.sklearn.SKLearnLikelihood(likelihood_type, parameter_names, n_outputs, random_state=None)[source]¶
Bases:
Likelihood
,ABC
Base class for sklearn wrapper (e.g. RegressionModel) likelihoods.
- Parameters
likelihood_type (
LikelihoodType
) – A pre-defined LikelihoodType.parameter_names (
list
[str
]) – The likelihood (distribution) parameter names.n_outputs (
int
) – The number of predicted outputs per model call. 1 if multi_models=False, otherwise output_chunk_length.random_state (
Optional
[int
,None
]) – Optionally, control the randomness of the sampling.
Attributes
Returns the number of distribution parameters for a single target value.
Returns the likelihood parameter names.
Returns the likelihood type.
Methods
component_names
(input_series)Generates names for the parameters of the Likelihood.
predict
(model, x, num_samples, ...)Generates sampled or direct likelihood parameter predictions.
predict_likelihood_parameters
(model_output)Returns the distribution parameters as a array, extracted from the raw model outputs.
sample
(model_output)Samples a prediction from the likelihood distribution and the predicted parameters.
- component_names(input_series)¶
Generates names for the parameters of the Likelihood.
- Return type
list
[str
]
- property num_parameters: int¶
Returns the number of distribution parameters for a single target value.
- Return type
int
- property parameter_names: list[str]¶
Returns the likelihood parameter names.
- Return type
list
[str
]
- predict(model, x, num_samples, predict_likelihood_parameters, **kwargs)[source]¶
Generates sampled or direct likelihood parameter predictions.
- Parameters
model – The Darts RegressionModel.
x (
ndarray
) – The input feature array passed to the underlying estimator’s predict() method.num_samples (
int
) – Number of times a prediction is sampled from the likelihood model / distribution. If 1 and predict_likelihood_parameters=False, returns median / mean predictions.predict_likelihood_parameters (
bool
) – If set to True, generates likelihood parameter predictions instead of sampling from the likelihood model / distribution. Only supported with num_samples = 1 and n<=output_chunk_length.kwargs – Some kwargs passed to the underlying estimator’s predict() method.
- Return type
ndarray
- abstract predict_likelihood_parameters(model_output)[source]¶
Returns the distribution parameters as a array, extracted from the raw model outputs.
- Return type
ndarray
- abstract sample(model_output)[source]¶
Samples a prediction from the likelihood distribution and the predicted parameters.
- Return type
ndarray
- property type: LikelihoodType¶
Returns the likelihood type.
- Return type