Callbacks for TorchForecastingModel#

class darts.utils.callbacks.TFMProgressBar(enable_sanity_check_bar=True, enable_train_bar=True, enable_validation_bar=True, enable_prediction_bar=True, enable_train_bar_only=False, **kwargs)[source]#

Bases: TQDMProgressBar

Darts’ Progress Bar for TorchForecastingModels.

Allows to customize for which model stages (sanity checks, training, validation, prediction) to display a progress bar.

This class is a PyTorch Lightning Callback and can be passed to the TorchForecastingModel constructor through the pl_trainer_kwargs parameter.

Examples

>>> from darts.models import NBEATSModel
>>> from darts.utils.callbacks import TFMProgressBar
>>> # only display the training bar and not the validation, prediction, and sanity check bars
>>> prog_bar = TFMProgressBar(enable_train_bar_only=True)
>>> model = NBEATSModel(1, 1, pl_trainer_kwargs={"callbacks": [prog_bar]})
Parameters:
  • enable_sanity_check_bar (bool) – Whether to enable to progress bar for sanity checks.

  • enable_train_bar (bool) – Whether to enable to progress bar for training.

  • enable_validation_bar (bool) – Whether to enable to progress bar for validation.

  • enable_prediction_bar (bool) – Whether to enable to progress bar for prediction.

  • enable_train_bar_only (bool) – Whether to disable all progress bars except the bar for training.

  • **kwargs – Arguments passed to the PyTorch Lightning’s TQDMProgressBar.

Attributes

state_key

Identifier for the state of the callback.

total_predict_batches_current_dataloader

The total number of prediction batches, which may change from epoch to epoch for current dataloader.

total_test_batches_current_dataloader

The total number of testing batches, which may change from epoch to epoch for current dataloader.

total_train_batches

The total number of training batches, which may change from epoch to epoch.

total_val_batches

The total number of validation batches, which may change from epoch to epoch for all val dataloaders.

total_val_batches_current_dataloader

The total number of validation batches, which may change from epoch to epoch for current dataloader.

is_disabled

is_enabled

predict_description

predict_progress_bar

process_position

refresh_rate

sanity_check_description

test_description

test_progress_bar

train_description

train_progress_bar

trainer

val_progress_bar

validation_description

Methods

disable()

You should provide a way to disable the progress bar.

enable()

You should provide a way to enable the progress bar.

get_metrics(trainer, pl_module)

Combines progress bar metrics collected from the trainer with standard metrics from get_standard_metrics.

init_predict_tqdm()

Override this to customize the tqdm bar for predicting.

init_sanity_tqdm()

Override this to customize the tqdm bar for the validation sanity run.

init_test_tqdm()

Override this to customize the tqdm bar for testing.

init_train_tqdm()

Override this to customize the tqdm bar for training.

init_validation_tqdm()

Override this to customize the tqdm bar for validation.

load_state_dict(state_dict)

Called when loading a checkpoint, implement to reload callback state given callback's state_dict.

on_after_backward(trainer, pl_module)

Called after loss.backward() and before optimizers are stepped.

on_before_backward(trainer, pl_module, loss)

Called before loss.backward().

on_before_optimizer_step(trainer, pl_module, ...)

Called before optimizer.step().

on_before_zero_grad(trainer, pl_module, ...)

Called before optimizer.zero_grad().

on_exception(trainer, pl_module, exception)

Called when any trainer execution is interrupted by an exception.

on_fit_end(trainer, pl_module)

Called when fit ends.

on_fit_start(trainer, pl_module)

Called when fit begins.

on_load_checkpoint(trainer, pl_module, ...)

Called when loading a model checkpoint, use to reload state.

on_predict_batch_end(trainer, pl_module, ...)

Called when the predict batch ends.

on_predict_batch_start(trainer, pl_module, ...)

Called when the predict batch begins.

on_predict_end(trainer, pl_module)

Called when predict ends.

on_predict_epoch_end(trainer, pl_module)

Called when the predict epoch ends.

on_predict_epoch_start(trainer, pl_module)

Called when the predict epoch begins.

on_predict_start(trainer, pl_module)

Called when the predict begins.

on_sanity_check_end(*_)

Called when the validation sanity check ends.

on_sanity_check_start(*_)

Called when the validation sanity check starts.

on_save_checkpoint(trainer, pl_module, ...)

Called when saving a checkpoint to give you a chance to store anything else you might want to save.

on_test_batch_end(trainer, pl_module, ...[, ...])

Called when the test batch ends.

on_test_batch_start(trainer, pl_module, ...)

Called when the test batch begins.

on_test_end(trainer, pl_module)

Called when the test ends.

on_test_epoch_end(trainer, pl_module)

Called when the test epoch ends.

on_test_epoch_start(trainer, pl_module)

Called when the test epoch begins.

on_test_start(trainer, pl_module)

Called when the test begins.

on_train_batch_end(trainer, pl_module, ...)

Called when the train batch ends.

on_train_batch_start(trainer, pl_module, ...)

Called when the train batch begins.

on_train_end(*_)

Called when the train ends.

on_train_epoch_end(trainer, pl_module)

Called when the train epoch ends.

on_train_epoch_start(trainer, *_)

Called when the train epoch begins.

on_train_start(*_)

Called when the train begins.

on_validation_batch_end(trainer, pl_module, ...)

Called when the validation batch ends.

on_validation_batch_start(trainer, ...[, ...])

Called when the validation batch begins.

on_validation_end(trainer, pl_module)

Called when the validation loop ends.

on_validation_epoch_end(trainer, pl_module)

Called when the val epoch ends.

on_validation_epoch_start(trainer, pl_module)

Called when the val epoch begins.

on_validation_start(trainer, pl_module)

Called when the validation loop begins.

print(*args[, sep])

You should provide a way to print without breaking the progress bar.

setup(trainer, pl_module, stage)

Called when fit, validate, test, predict, or tune begins.

state_dict()

Called when saving a checkpoint, implement to generate callback's state_dict.

teardown(trainer, pl_module, stage)

Called when fit, validate, test, predict, or tune ends.

has_dataloader_changed

reset_dataloader_idx_tracker

init_predict_tqdm()[source]#

Override this to customize the tqdm bar for predicting.

Return type:

Tqdm

init_sanity_tqdm()[source]#

Override this to customize the tqdm bar for the validation sanity run.

Return type:

Tqdm

init_train_tqdm()[source]#

Override this to customize the tqdm bar for training.

Return type:

Tqdm

init_validation_tqdm()[source]#

Override this to customize the tqdm bar for validation.

Return type:

Tqdm