- class darts.utils.multioutput.MultiOutputClassifier(estimator, eval_set_name=None, eval_weight_name=None, output_chunk_length=None, **kwargs)[source]¶
Bases:
MultiOutputMixin,MultiOutputClassifiersklearn.utils.multioutput.MultiOutputClassifierwith a modifiedfit()method that also slices validation data correctly. The validation data has to be passed as parametereval_setin**fit_params.Attributes
Whether model supports sample weight for training.
Methods
fit(X, y[, sample_weight])Fit the model to data, separately for each output variable.
Get metadata routing of this object.
get_params([deep])Get parameters for this estimator.
partial_fit(X, y[, classes, sample_weight])Incrementally fit a separate model for each class output.
predict(X)Predict multi-output variable using model for each target variable.
Return prediction probabilities for each class of each output.
score(X, y)Return the mean accuracy on the given test data and labels.
set_fit_request(*[, sample_weight])Configure whether metadata should be requested to be passed to the
fitmethod.set_params(**params)Set the parameters of this estimator.
set_partial_fit_request(*[, classes, ...])Configure whether metadata should be requested to be passed to the
partial_fitmethod.- fit(X, y, sample_weight=None, **fit_params)[source]¶
Fit the model to data, separately for each output variable.
- Parameters
X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The input data.
y ({array-like, sparse matrix} of shape (n_samples, n_outputs)) – Multi-output targets. An indicator matrix turns on multilabel estimation.
sample_weight (array-like of shape (n_samples, n_outputs), default=None) – Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
**fit_params (dict of string -> object) –
Parameters passed to the
estimator.fitmethod of each step.New in version 0.23.
- Returns
self – Returns a fitted instance.
- Return type
object
- get_metadata_routing()¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
New in version 1.3.
- Returns
routing – A
MetadataRouterencapsulating routing information.- Return type
MetadataRouter
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
dict
- partial_fit(X, y, classes=None, sample_weight=None, **partial_fit_params)¶
Incrementally fit a separate model for each class output.
- Parameters
X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The input data.
y ({array-like, sparse matrix} of shape (n_samples, n_outputs)) – Multi-output targets.
classes (list of ndarray of shape (n_outputs,), default=None) – Each array is unique classes for one output in str/int. Can be obtained via
[np.unique(y[:, i]) for i in range(y.shape[1])], where y is the target matrix of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn’t need to contain all labels in classes.sample_weight (array-like of shape (n_samples,), default=None) – Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
**partial_fit_params (dict of str -> object) –
Parameters passed to the
estimator.partial_fitmethod of each sub-estimator.Only available if enable_metadata_routing=True. See the User Guide.
New in version 1.3.
- Returns
self – Returns a fitted instance.
- Return type
object
- predict(X)¶
Predict multi-output variable using model for each target variable.
- Parameters
X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The input data.
- Returns
y – Multi-output targets predicted across multiple predictors. Note: Separate models are generated for each predictor.
- Return type
{array-like, sparse matrix} of shape (n_samples, n_outputs)
- predict_proba(X)[source]¶
Return prediction probabilities for each class of each output.
This method will raise a
ValueErrorif any of the estimators do not havepredict_proba.- Parameters
X (array-like of shape (n_samples, n_features)) – The input data.
- Returns
p – The class probabilities of the input samples. The order of the classes corresponds to that in the attribute classes_.
Changed in version 0.19: This function now returns a list of arrays where the length of the list is
n_outputs, and each array is (n_samples,n_classes) for that particular output.- Return type
array of shape (n_samples, n_classes), or a list of n_outputs such arrays if n_outputs > 1.
- score(X, y)[source]¶
Return the mean accuracy on the given test data and labels.
- Parameters
X (array-like of shape (n_samples, n_features)) – Test samples.
y (array-like of shape (n_samples, n_outputs)) – True values for X.
- Returns
scores – Mean accuracy of predicted target versus true target.
- Return type
float
- set_fit_request(*, sample_weight: Union[bool, None, str] = '$UNCHANGED$') MultiOutputClassifier¶
Configure whether metadata should be requested to be passed to the
fitmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
- Parameters
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter infit.- Returns
self – The updated object.
- Return type
object
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
estimator instance
- set_partial_fit_request(*, classes: Union[bool, None, str] = '$UNCHANGED$', sample_weight: Union[bool, None, str] = '$UNCHANGED$') MultiOutputClassifier¶
Configure whether metadata should be requested to be passed to the
partial_fitmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed topartial_fitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it topartial_fit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
- Parameters
classes (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
classesparameter inpartial_fit.sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inpartial_fit.
- Returns
self – The updated object.
- Return type
object
- property supports_sample_weight: bool¶
Whether model supports sample weight for training.
- Return type
bool
- class darts.utils.multioutput.MultiOutputMixin(estimator, eval_set_name=None, eval_weight_name=None, output_chunk_length=None, **kwargs)[source]¶
Bases:
objectMixin for
sklearn.utils.multioutput._MultiOutputEstimatorwith a modifiedfit()method that also slices validation data correctly. The validation data has to be passed as parametereval_setin**fit_params.Attributes
Whether model supports sample weight for training.
Methods
fit(X, y[, sample_weight])Fit the model to data, separately for each output variable.
- fit(X, y, sample_weight=None, **fit_params)[source]¶
Fit the model to data, separately for each output variable.
- Parameters
X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The input data.
y ({array-like, sparse matrix} of shape (n_samples, n_outputs)) – Multi-output targets. An indicator matrix turns on multilabel estimation.
sample_weight (array-like of shape (n_samples, n_outputs), default=None) – Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
**fit_params (dict of string -> object) –
Parameters passed to the
estimator.fitmethod of each step.New in version 0.23.
- Returns
self – Returns a fitted instance.
- Return type
object
- property supports_sample_weight: bool¶
Whether model supports sample weight for training.
- Return type
bool
- class darts.utils.multioutput.MultiOutputRegressor(estimator, eval_set_name=None, eval_weight_name=None, output_chunk_length=None, **kwargs)[source]¶
Bases:
MultiOutputMixin,MultiOutputRegressorsklearn.utils.multioutput.MultiOutputClassifierwith a modifiedfit()method that also slices validation data correctly. The validation data has to be passed as parametereval_setin**fit_params.Attributes
Whether model supports sample weight for training.
Methods
fit(X, y[, sample_weight])Fit the model to data, separately for each output variable.
Get metadata routing of this object.
get_params([deep])Get parameters for this estimator.
partial_fit(X, y[, sample_weight])Incrementally fit the model to data, for each output variable.
predict(X)Predict multi-output variable using model for each target variable.
score(X, y[, sample_weight])Return coefficient of determination on test data.
set_fit_request(*[, sample_weight])Configure whether metadata should be requested to be passed to the
fitmethod.set_params(**params)Set the parameters of this estimator.
set_partial_fit_request(*[, sample_weight])Configure whether metadata should be requested to be passed to the
partial_fitmethod.set_score_request(*[, sample_weight])Configure whether metadata should be requested to be passed to the
scoremethod.- fit(X, y, sample_weight=None, **fit_params)¶
Fit the model to data, separately for each output variable.
- Parameters
X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The input data.
y ({array-like, sparse matrix} of shape (n_samples, n_outputs)) – Multi-output targets. An indicator matrix turns on multilabel estimation.
sample_weight (array-like of shape (n_samples, n_outputs), default=None) – Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
**fit_params (dict of string -> object) –
Parameters passed to the
estimator.fitmethod of each step.New in version 0.23.
- Returns
self – Returns a fitted instance.
- Return type
object
- get_metadata_routing()¶
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
New in version 1.3.
- Returns
routing – A
MetadataRouterencapsulating routing information.- Return type
MetadataRouter
- get_params(deep=True)¶
Get parameters for this estimator.
- Parameters
deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns
params – Parameter names mapped to their values.
- Return type
dict
- partial_fit(X, y, sample_weight=None, **partial_fit_params)[source]¶
Incrementally fit the model to data, for each output variable.
- Parameters
X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The input data.
y ({array-like, sparse matrix} of shape (n_samples, n_outputs)) – Multi-output targets.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights. If None, then samples are equally weighted. Only supported if the underlying regressor supports sample weights.
**partial_fit_params (dict of str -> object) –
Parameters passed to the
estimator.partial_fitmethod of each sub-estimator.Only available if enable_metadata_routing=True. See the User Guide.
New in version 1.3.
- Returns
self – Returns a fitted instance.
- Return type
object
- predict(X)¶
Predict multi-output variable using model for each target variable.
- Parameters
X ({array-like, sparse matrix} of shape (n_samples, n_features)) – The input data.
- Returns
y – Multi-output targets predicted across multiple predictors. Note: Separate models are generated for each predictor.
- Return type
{array-like, sparse matrix} of shape (n_samples, n_outputs)
- score(X, y, sample_weight=None)¶
Return coefficient of determination on test data.
The coefficient of determination, \(R^2\), is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred)** 2).sum()and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters
X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape
(n_samples, n_samples_fitted), wheren_samples_fittedis the number of samples used in the fitting for the estimator.y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns
score – \(R^2\) of
self.predict(X)w.r.t. y.- Return type
float
Notes
The \(R^2\) score used when calling
scoreon a regressor usesmultioutput='uniform_average'from version 0.23 to keep consistent with default value ofr2_score(). This influences thescoremethod of all the multioutput regressors (except forMultiOutputRegressor).
- set_fit_request(*, sample_weight: Union[bool, None, str] = '$UNCHANGED$') MultiOutputRegressor¶
Configure whether metadata should be requested to be passed to the
fitmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
- Parameters
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter infit.- Returns
self – The updated object.
- Return type
object
- set_params(**params)¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
**params (dict) – Estimator parameters.
- Returns
self – Estimator instance.
- Return type
estimator instance
- set_partial_fit_request(*, sample_weight: Union[bool, None, str] = '$UNCHANGED$') MultiOutputRegressor¶
Configure whether metadata should be requested to be passed to the
partial_fitmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed topartial_fitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it topartial_fit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
- Parameters
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inpartial_fit.- Returns
self – The updated object.
- Return type
object
- set_score_request(*, sample_weight: Union[bool, None, str] = '$UNCHANGED$') MultiOutputRegressor¶
Configure whether metadata should be requested to be passed to the
scoremethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toscoreif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toscore.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.New in version 1.3.
- Parameters
sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for
sample_weightparameter inscore.- Returns
self – The updated object.
- Return type
object
- property supports_sample_weight: bool¶
Whether model supports sample weight for training.
- Return type
bool
- darts.utils.multioutput.get_multioutput_estimator_cls(model_type)[source]¶
- Return type
type[MultiOutputMixin]